

Measuring neutral current single π^0 event rate on water at T2K

Zoya Vallari for the T2K Collaboration

Department of Physics and Astronomy, Stony Brook University, New York email:zoya.zoya@stonybrook.edu

295 km

Figure 1: T2K Experiment

Near Detector

Neutrino beam

J-PARC

Introduction

Why Study NC1 π^0 on Water? Mt. Noguchi-Goro 2924 m water equiv. \uparrow 1700 m π^0 decays to two photons which

• The T2K Experiment is a long-baseline neutrino oscillation experiment.[1]

Super Kamiokande

- The pi0 detector P0D is one of the near detectors of T2K located at the near detector complex 280 m downstream of the ν source.
- It has 50 alternating layers of water and scintillator interspersed with brass and lead.
- The water can be filled and drained out of the P0D periodically, enabling measurements completely on-water.

Figure 2: P0D at near detector complex, T2K

Measuring Event Rate

Selection Strategy

behave similar to an electron in a

background for detecting $\nu_e/\bar{\nu}_e$

T2K energy range has not been

appearance at Super-Kamiokande.

• Cross section of $NC1\pi^0$ on water at

Water-Cherenkov detector.

This forms an important

measured previously.

Detector Cuts: Within P0D fiducial volume, containment in P0D, π^0 direction < 60°

Muon Decay Cluster Tag: Removes events with a μ decay cluster

Particle ID: All particles are tagged EM like

Charge-in-Shower: > 90% charge in event is contained in two showers from π^0 decay

Object Separation: the two showers are separated in space for better reconstruction

Updates & Improvements

${ m RESULTS}^{[2]}$

MC: NEUT v5.1.4.2.

T2K data:

 $2.64 * 10^{20}$ protons-on-target P0D Water-In $3.49 * 10^{20}$ protons-on-target P0D Water-Out

 $NC1\pi^0$ events on water: MC prediction = 157 events

Data = $106 \pm 41(stat.) \pm 69(sys.)$

Target Ratio (Data/MC) Water-In $0.790 \pm 0.076(\text{stat.}) \pm 0.143(\text{sys.})$ Water-Out $0.850 \pm 0.091(\text{stat.}) \pm 0.137(\text{sys.})$ On-Water $0.677 \pm 0.261(\text{stat.}) \pm 0.462(\text{sys.})$

A new iteration of this analysis is underway with:

- Latest production of reconstruction with better Particle ID algorithm and new T2K data runs.
- Object separation was redefined for a more accurate selection and to reduce the effect of systematic uncertainty from this cut.
- Aim to better understand and calculate the correlated background shape systematics.
- Developed a Markov Chain Monte Carlo likelihood fitter to fit the Invariant Mass of π^0 .

Figure 3: a) Only Signal; b) Only Background; for the new Object Separation definition Vs Invariant Mass of π^0 c) solid red line represents a cut on object separation which gives a better Invariant Mass peak of π^0 in part d), while the dotted line presents an option to divide the 2D phase space in two samples which can be fit simultaneously with constraints.

Conclusion

- A measurement of $NC1\pi^0$ production rate on water was made in P0D at T2K [2]. The observed event rates are consistent with the expectation and indicate that the $NC1\pi^0$ event rate is not underestimated in the MC.
- This result has a large systematic uncertainty. New update aims to make a more accurate estimation of systematics for ν mode and produce a first result for $\bar{\nu}$ mode.

References

- [1] K. Abe et al., Nuclear Instruments and Methods, vol. A 569, (106)2011
- [2] K. Abe et al. arXiv:1704.07467 [hep-ex]
 I would like to acknowledge Dr. Karin Gilje for her thesis work on this analysis before me.