Experimental Investigation of the Transverse and Longitudinal Structure Functions of Bound Nucleons at Jlab

Arie Bodek

University of Rochester

(The JUPITER Collaboration Jlab E02-109 E04-001 E06-009)

Presented at

Nuint 2017, Toronto

Tuesday June 27, 2017 - 11:45-12:05

Special thanks to *S. Malace, Jefferson Lab, V. Mamyan, University of Virginia, I. Albayrak and M. E. Christy Hampton University*

Basics: Rosenbluth L/T Separations

≻ Separate **L** and **T** contributions to the total cross section by performing a fit of **the reduced cross section dependence with** ε at *fixed x and* Q^2

$$
\frac{d^2\sigma}{d\Omega dE'} = \Gamma(\sigma_T(x, Q^2) + \varepsilon \sigma_L(x, Q^2)) = \Gamma \sigma_T(1 + \varepsilon R) \quad \varepsilon = 1/(1 + 2(1 + \nu^2 /_{Q^2})\tan^2(\frac{\theta}{2}))
$$

$$
F_1(x, Q^2) = \frac{KM}{4\pi^2 \alpha} \sigma_T(x, Q^2) \quad F_2(x, Q^2) = \frac{K}{4\pi^2 \alpha} \frac{\nu}{(1 + \nu^2 / Q^2)} [\sigma_T + \sigma_L]
$$

Requirements for precise $R = \sigma_L/\sigma_T$:

■ As many ε points as possible spanning a large interval from 0 to 1 \rightarrow *as many (E, E',* θ *) settings as possible*

 \blacktriangleright *Very* good control of point-to-point systematics \rightarrow **1-2 % on the reduced cross** section translates into **10-15 % on F_L (or 0.02 to 0.04 on R=** $\frac{1}{\sigma_1}$ **/** $\frac{1}{\sigma_7}$ **)**

Deep inelastic neutrino differential cross section are relatively well known. The following are systematic errors in the high energy DIS total cross sections *for W>1.8 GeV (Bodek-Yang)*

$$
\frac{d\sigma(\nu N)}{dx} \approx \frac{G_F^2 M E}{\pi} (Q + \overline{Q}) \Big[(1 - f_{\overline{Q}}) + \frac{1}{3} f_{\overline{Q}} - \frac{1}{6} \mathcal{R} \Big], \tag{51}
$$

and

$$
\frac{d\sigma(\overline{\nu}N)}{dx} \approx \frac{G_F^2 M E}{\pi} (Q + \overline{Q}) \left[\frac{1}{3} (1 - f_{\overline{Q}}) + f_{\overline{Q}} - \frac{1}{6} \mathcal{R} \right].
$$
 (52)

How well do we know these for nuclear targets in the resonance region?

If AR in a nucleus **Is 0.25 All these** errors go up by x5

Practically no existing data on R_{A}

 \triangleright F_{2A}, R_A in this region is input for modeling neutrino interactions \rightarrow Neutrino oscillation experiments Requires good models for neutrino-A cross sections at low energy

At low Q^2 a model by Miller predicts significant *A*-dependent enhancement in F_L due to nuclear pions/mesons. $+0.25$ increase in R at Q2=0.3 GeV2 Much smaller for Q2> 1 GeV2

This implies a reduction of 5% in neutrino and 10% in antineutrino cross section at The region of the Delta (1238).

(In addition to the normalization Uncertainty in F2).

G.A.Miller, Phys.Rev.C64,022201(2001)

6 GeV L/T separation program in Hall C

Proton F_2 , F_1 , F_1 well measured at 6 GeV

 \rightarrow Used to study Q-H duality, structure function moments, and input for other physics studies

- \rightarrow Deuteron and nuclear target data of similar quality to study
	- => duality and QCD moments of neutron and p-n
- **6/27/17 Modifications of** $\mathbf{F}_{1'}$ **,** \mathbf{F}_{L} **in nuclear medium** 6/27/17

Status of F_L deuteron data

- \rightarrow Multiple new data sets
- I. E00-002 (also proton data)
- II. E06-009
- \rightarrow Generally good agreement between data sets, but some tension in fit.

fit is Weak-binding approximation Smearing fit (proton input from Christy-Bosted fit)

M.E.C, N. Kalantarians, J. Ethier, W. Melnitchouk, In preparatiion

 \rightarrow additional low Q² resonance region from phase-I (E02-109) expected to be finalized Winter of 2017.

Exercision extraction separated structure functions on: d, Al, C, Fe/Cu **FL, R on Deuterium and heavier targets JLab Hall C: E02-109, E04-001, E06-009**

 \blacklozenge Search for nuclear effects in F_L, R.

◆ Study quark-hadron duality in separated structure functions for neutron and nuclei.

THIS TALK

$F_L^A(R_A)$ in Nuclei (E04-001)
Jupiter Collaboration

*Well known since the EMC experiment that the nuclear medium modifies nucleon structure functions.

 \rightarrow However, after 25 years the mechanism is still not fully understood.

 \rightarrow Is the effect different in F_1 and F_2 ?

* The latter \Rightarrow nuclear dependence of R and F_L !

Need to know if A dependence exists in F_L for full understanding of EMC effect.

Most existing data at intermediate x from SLAC E140

(Dasu *et.al Phys. Lett. D 49 (1993*)

Re-analysis of L/T separations (P. Solvignon, J. Arrington, D. Gaskell,ArXiv:0906.0512) including neglected Coulomb effects for electron entering and exiting nucleus

This is for $Q2 = 5$ GeV2

Final E04-001 Phase II ⁵⁶Fe cross sections (no Couloumb corrections)

- \rightarrow Example scans utilized in L/T Separations at $Q^2 = 2$ near Delta(1232)
- \rightarrow Correlated systematics at bottom
- \rightarrow Red curve represents fit to global data set using p, n (d) fits as input.

Example E04-001 Phase II L/T Separations Note we now use σ_T^{-d} / σ_T^{-A} LT Sep 32/55

The experiment also measures absolute $2xF_1$, F_2 , F_1 in the Res. Region for several nuclear targets **C, Al, Fe, Cu as well as R_A-R_D**

To the MRST pQCD fit EMC effect corrections and *isoscaler* corrections are also added

Vahe Mamyan, Ph.D. thesis, University of Virginia 6/27/17 A. Bodek, NUINT 2017 Toronto 16

FIG. 1: Fig.1 Extracted values of R_D and F_{2D} in fine bins of W for three values of Q^2 compared to the theoretical expectation for R_D from NNLO QCD, from NNLO QCD including 6 target mass corrections, and from a fit to the world's previous 17 measurements of R for free protons (R_{1998}) .

 $Q^2 = 2 \text{ GeV}^2$ Results for $\mathbf{R}_A - \mathbf{R}_d$ and σ_T^d / σ_T^A ¹²C

- \triangleright Correlated systematics determined by shifting cross sections and repeating L/T separations
- \triangleright Curve is fit to global cross sections with proton and neutron inputs

(M. E. Christy, T. Gautam, A. Bodek, in preparation)

 \triangleright (note that QE has not been subtracted)

 $Q^2 = 2 \text{ GeV}^2$ Results for $\mathbf{R}_A - \mathbf{R}_d$ and σ_T^d / σ_T^d **^A** 56Fe

 $R_c - R_d$ **:**Compare to Fermi motion calculation Bodek and Cai

(to be published 2017)**.** Uses effective spectral function (ESF): simulates Psi scaling includes SRC

> 2. A. Bodek, M. E. Christy and B, Coppersmith, Eur. Phys. J. C (2014) 74:3091

High momentum components affect R In a nucleus

$$
W_{\mu\nu} = -\mathcal{W}_1(\nu, q^2) \left[g_{\nu\mu} - \frac{q_{\mu}q_{\nu}}{q^2} \right] + \frac{\mathcal{W}_2(\nu, q^2)}{M^2} \left[p_{\mu} - \frac{M\nu}{q^2} q_{\mu} \right] \left[p_{\mu} - \frac{M\nu}{q^2} q_{\mu} \right] \mathcal{W}_1^S(q^2, \nu) = \int [\mathcal{W}_1(q^2, \nu_w) + \frac{k_T^2}{2M^2} \mathcal{W}_2(q^2, \nu_w)] |\phi(k)|^2 d^3k \mathcal{W}_2^S(q^2, \nu) = \int \mathcal{W}_2(q^2, \nu_w) \left[(\frac{\nu'}{\nu})^2 \left(1 - \frac{k_z^2 q^2}{M\nu' |q|} \right)^2 \right. - \frac{k_T^2}{2M^2} \frac{q^2}{|q|^2} \left] |\phi(k)|^2 d^3k \mathcal{W}_3^S(q^2, \nu) = \int \mathcal{W}_3(q^2, \nu_w) \left[\frac{Ei}{M} - \frac{k_z \nu}{M |q|} \right] |\phi(k)|^2 d^3k
$$

A. Bodek and J. L. Ritchie, Phys. Rev. D23, 1070 (1981).

 12ϵ

QE+RES with ESF. ESF Q2=2 GeV2 Carbon RC-RD

Green – Wµn **tensor smearing purple - Wµv tensor smearing with off-shell correction (from Q2=0) Blue – Simple W₁ W**₂ **smearing**

Green – Wµn **tensor smearing**

- **purple Wµv tensor smearing with off-shell correction (from Q2=0)**
- **Blue – Simple W₁ W**₂ **smearing**

Conclusion: Simple Fermi smearing does not work:

Low Q2 analysis –coming soon

QE+RES with ESF (Q2=4 GeV2) Carbon RC-RD

RC-RD
Table 3. Sources of systematic error in the predicted inelastic contribution to the total cross section on iron (for $W > 1.8 GeV$). The change (positive or negative) in the neutrino, antineutrino and the $\sigma_{\nu}/\sigma_{\nu}$ ratio that originate from a plus one standard deviation change in the ratio of transverse to longitudinal structure functions (R) , the fraction of antiquarks $(f_{\overline{q}})$, the axial quark-antiquark sea, and the overall normalization of the structure functions (N).

QE+RES with ESF. ESF Q2=2 GeV2 Carbon RC-RD

Future Plans

- 1. Publish higher Q^2 Phase II data. $(Q^2=2, 3, 4$ GeV²)
- 2. Study separation of QE and inelastic on R_A-R_d
- 3. Finalize low Q^2 Phase I data $(Q^2: 0.2$ to 2.5) near end of 2017.

 \rightarrow adds additional ε points at $2 < Q^2 < 3$

 \Rightarrow reduced systematics in higher Q^2 data

- \rightarrow allows study of Q² dependence for R_A-R_d
- \rightarrow Look for evidence of Miller's nuclear pions
- 4 Precise measurement of absolute W1 and W2 and ratio to Deuterium.

Extra Slides

Experimental Investigation of the Structure Functions of Bound Nucleons

V. Mamyan.²⁷ I. Albayrak.¹¹ A. Ahmidouch.²² J. Arrington.¹ A. Asaturyan.³¹ A. Bodek.²⁴ P. Bosted.²⁹ R. Bradford,^{1,24} E. Brash,³ A. Bruell,⁵ C Butuceanu,²³ M. E. Christy,¹¹ S. J. Coleman,²⁹ M. Commisso,²⁷ S. H. Connell,⁹ M. M. Dalton,²⁷ S. Danagoulian,²² A. Daniel,¹² D. B. Day,²⁷ S. Dhamija,⁷ J. Dunne,¹⁸ D. Dutta,¹⁸ R. Ent,⁸ D. Gaskell,⁸ A. Gasparian,²² R. Gran,¹⁷ T. Horn,⁸ Liting Huang,¹¹ G. M. Huber,²³ C. Jayalath,¹¹ M. Johnson,^{1,21} M. K. Jones,⁸ N. Kalantarians,¹² A. Liyanage,¹¹ C. E. Keppel,¹¹ E. Kinney,⁴ Y. Li,¹¹ S. Malace, ⁶ S. Manly, ²⁴ P. Markowitz, ⁷ J. Maxwell, ²⁷ N. N. Mbianda, ⁹ K. S. McFarland, ²⁴ M. Meziane, ²⁹ Z. E. Meziani,²⁶ G. B Mills,¹⁵ H. Mkrtchyan,³¹ A. Mkrtchyan,³¹ J. Mulholland,²⁷ J. Nelson,²⁹ G. Niculescu,¹⁰ I. Niculescu,¹⁰ L. Pentchev,²⁹ A. Puckett,^{16,15} V. Punjabi,²⁰ I. A. Qattan,¹³ P. E. Reimer,¹ J. Reinhold,⁷ V. M Rodriguez,¹² O. Rondon-Aramayo,²⁷ M. Sakuda,¹⁴ W. K. Sakumoto,²⁴ E. Segbefia,¹¹ T. Seva,³² I. Sick,² K. Slifer,¹⁹ G. R Smith,⁸ J. Steinman,²⁴ P. Solvignon,¹ V. Tadevosyan,³¹ S. Tajima,²⁷ V. Tvaskis,³⁰ G. R. Smith,⁸ W. F. Vulcan,⁸ T. Walton,¹¹ F. R Wesselmann,²⁰ S. A. Wood,⁸ and Zhihong Ye¹¹ (The JUPITER Collaboration Jlab E02-109 E04-001 E06-009)

Are F_2 , F_1 and F_1 (or R) modified differently by the nuclear medium?

special thanks to S. Malace, Jefferson Lab, V. Mamyan,, University of Virginia, I. Albayrak and M. E. Christy Hampton University

Experimental Investigation of the Structure Functions of Bound Nucleons

V. Mamvan.²⁷ I. Albayrak.¹¹ A. Ahmidouch.²² J. Arrington.¹ A. Asaturvan.³¹ A. Bodek.²⁴ P. Bosted.²⁹ R. Bradford,^{1,24} E. Brash,³ A. Bruell,⁵ C Butuceanu,²³ M. E. Christy,¹¹ S. J. Coleman,²⁹ M. Commisso,²⁷ S. H. Connell,⁹ M. M. Dalton,²⁷ S. Danagoulian,²² A. Daniel,¹² D. B. Day,²⁷ S. Dhamija,⁷ J. Dunne,¹⁸ D. Dutta,¹⁸ R. Ent.⁸ D. Gaskell.⁸ A. Gasparian.²² R. Gran.¹⁷ T. Horn.⁸ Liting Huang.¹¹ G. M. Huber.²³ C. Javalath.¹¹ M. Johnson,^{1,21} M. K. Jones,⁸ N. Kalantarians,¹² A. Liyanage,¹¹ C. E. Keppel,¹¹ E. Kinney,⁴ Y. Li,¹¹ S. Malace.⁶ S. Manly.²⁴ P. Markowitz.⁷ J. Maxwell.²⁷ N. N. Mbianda.⁹ K. S. McFarland.²⁴ M. Meziane.²⁹ Z. E. Meziani, 26 G. B Mills, ¹⁵ H. Mkrtchyan, ³¹ A. Mkrtchyan, ³¹ J. Mulholland, ²⁷ J. Nelson, ²⁹ G. Niculescu, ¹⁰ I. Niculescu,¹⁰ L. Pentchev,²⁹ A. Puckett,^{16,15} V. Punjabi,²⁰ I. A. Qattan,¹³ P. E. Reimer,¹ J. Reinhold,⁷ V. M Rodriguez,¹² O. Rondon-Aramayo,²⁷ M. Sakuda,¹⁴ W. K. Sakumoto,²⁴ E. Segbefia,¹¹ T. Seva,³² I. Sick,² K. Slifer,¹⁹ G. R. Smith,⁸ J. Steinman,²⁴ P. Solvignon,¹ V. Tadevosyan,³¹ S. Tajima,²⁷ V. Tvaskis,³⁰ G. R. Smith,⁸ W. F. Vulcan,⁸ T. Walton,¹¹ F. R. Wesselmann,²⁰ S. A. Wood,⁸ and Zhihong Ye¹¹ (The JUPITER Collaboration Jlab E02-109 E04-001 E06-009) 1 Argonne National Laboratory, Argonne, IL 60439, USA ²University of Basel, CH-4056 Basel, Switzerland ³Christopher Newport University, Newport News, VA 23606, USA 4 University of Colorado, Boulder, CO, USA ⁵DFG, German Research Foundation, Germany 6Duke University, Dept. of Physics, Box 90305 Durham, NC 27708 $^\gamma$ Florida International University, Miami, FL 33199, USA ⁸Thomas Jeferson National Accelerator Facility, Newport News, VA 23606, USA ⁹University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa 10 James Madison University, Harrisonburg, VA 22801, USA ¹¹Hampton University, Hamton, VA 23668, USA ¹² University of Houston, Houston, TX 77004, USA 13 Khalifa University of Science, Technology and Research, Sharjah 573, UAE ¹⁴ High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ¹⁵Los Alamos National Laboratory Los Alamos NM 87545, USA 16 Massachusetts Institute of Technology, Cambridge, MA 02139 ,USA ¹⁷Department of Physics. University of Minnesota-Duluth Duluth MN 55812 USA ¹⁸Mississippi State University, Mississippi State, MS 39762, USA 19 University of New Hampshire, Durham, NH 03824, USA ²⁰Norfolk State University, Norfolk VA 23504 USA ²¹Northwestern University, Evanston, IL 60208, USA ²²North Carolina A&T State University, Greensboro NC, 27411, USA ²³ University of Regina, Regina, Saskatchewan, SAS 0A2, Canada 24 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA ²⁵ University of Southern California, Los Angeles, CA 90033, USA ²⁶Department of Physics, Temple University, Philadelphia, PA 19122, USA ²⁷ University of Virginia, Charlottesville, VA 22904, USA ²⁸Vrije Universiteit, Amsterdam, Netherlands ²⁹Department of Physics, College of William & Mary, Williamsburg, VA 23187, USA University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9 $\frac{31}{27/17}$ and $\frac{31}{26}$ $\frac{1}{26}$ $\frac{32}{26}$ $\frac{1}{26}$ $\frac{32}{26}$ $\frac{1}{26}$ $\frac{32}{26}$ $\frac{1}{26}$ $\frac{1}{26}$ Focus of this talk will be the 6 GeV program in JLab Hall C to separate all unpolarized structure functions: F_1, F_2, F_L

Kinematic coverage: $0.3 < Q^2 < 4$ **W2 < 4 (Resonance Region, RR)**

Targets: **proton, deuteron, 12C, 27Al, 56Fe, 64Cu Electron scattering** $\frac{d^2\sigma}{d\Omega dE'}(E_0, E', \theta) = \frac{4\alpha^2 E'^2}{O^4} \cos^2(\theta/2)$ $\times [\mathcal{F}_2(x, Q^2)/\nu + 2\tan^2(\theta/2)\mathcal{F}_1(x, Q^2)/M],$

$$
\frac{d^2\sigma}{d\Omega dE'} = \Gamma \left[\sigma_T(x, Q^2) + \epsilon \sigma_L(x, Q^2) \right],
$$

where

$$
I = \frac{\alpha KE'}{4\pi^2 Q^2 E_0} \left(\frac{2}{1-\epsilon}\right)
$$

\n
$$
K = \frac{Q^2 (1-x)}{2Mx} = \frac{2M\nu - Q^2}{2M}
$$

\n
$$
\epsilon = \left[1 + 2(1 + \frac{Q^2}{4M^2 x^2})\tan^2 \frac{\theta}{2}\right]^{-1}
$$

$$
\epsilon = \frac{1-y-Q^2/(4E_0^2)}{1-y+y^2/2+Q^2/(4E_0^2)},
$$

which in the limit of $Q^2 \ll E_0^2$ is approximately

$$
\epsilon = \frac{2(1-y)}{2(1-y)+y^2}
$$

$$
\mathcal{R}(x, Q^2) = \frac{\sigma_L}{\sigma_T} = \frac{\mathcal{F}_2}{2x\mathcal{F}_1} \left(1 + \frac{4M^2x^2}{Q^2}\right) - 1 = \frac{\mathcal{F}_L}{2x\mathcal{F}_1}.
$$

$$
\mathcal{R}(x, Q^2) = \frac{\sigma_L}{\sigma_T} = \frac{\mathcal{F}_2}{2x\mathcal{F}_1} \left(1 + \frac{4M^2x^2}{Q^2}\right) - 1 = \frac{\mathcal{F}_L}{2x\mathcal{F}_1}
$$

$$
\mathcal{F}_1 = \frac{MK}{4\pi^2 \alpha} \sigma_T
$$

$$
\mathcal{F}_2 = \frac{\nu K (\sigma_L + \sigma_T)}{4\pi^2 \alpha (1 + \frac{Q^2}{4M^2 x^2})}
$$

$$
\mathcal{F}_L(x, Q^2) = \mathcal{F}_2 \left(1 + \frac{4M^2 x^2}{Q^2} \right) - 2x \mathcal{F}_1,
$$

or

$$
2x\mathcal{F}_1 = \mathcal{F}_2 \left(1 + \frac{4M^2x^2}{Q^2} \right) - \mathcal{F}_L(x, Q^2).
$$

In addition, $2x\mathcal{F}_1$ is given by

$$
2x\mathcal{F}_1(x,Q^2) = \mathcal{F}_2(x,Q^2)\frac{1+4M^2x^2/Q^2}{1+\mathcal{R}(x,Q^2)},
$$

or equivalently

$$
\mathcal{W}_1(x, Q^2) = \mathcal{W}_2(x, Q^2) \times \frac{1 + \nu^2 / Q^2}{1 + \mathcal{R}(x, Q^2)}.
$$

Electron scattering continued Neutrino Vector quark-hadron duality

ing expressions: $\mathcal{F}_2 = 2x[q(x, Q^2) + \overline{q}(x, Q^2)]$ and $x\mathcal{F}_3 = 2x[q(x, Q^2) - \overline{q}(x, Q^2)]$. We define $Q = \int_0^1 2x[q(x, Q^2)]dx$

$$
\frac{d^2\sigma^{\nu(\mathcal{V})}}{dxdy} = \frac{G_F^2ME}{\pi}
$$
\n
$$
\times \left(\left[1 - y(1 + \frac{Mx}{2E}) + \frac{y^2}{2} \frac{1 + Q^2/\nu^2}{1 + \mathcal{R}(x, Q^2)} \right] \mathcal{F}_2
$$
\n
$$
\pm \left[y - \frac{y^2}{2} \right] x \mathcal{F}_3 \right). \tag{48}
$$

 σ

$$
\frac{d^2\sigma^{\nu}}{dxdy} = \frac{G_F^2ME}{\pi} \Big(Q(x, Q^2) + (1 - y)^2 \overline{Q}(x, Q^2)
$$

$$
- \frac{y^2}{2} \frac{\mathcal{R}(x, Q^2)}{1 + \mathcal{R}(x, Q^2)} (Q + \overline{Q})
$$

$$
+ \Big[-\frac{Mxy}{2E} + \frac{Mxy/E}{1 + \mathcal{R}(x, Q^2)} \Big] (Q + \overline{Q}) \Big). \quad (49)
$$

and

$$
\frac{d^2\sigma^{\overline{\nu}}}{dxdy} = \frac{G_F^2ME}{\pi} \Big(\overline{Q}(x, Q^2) + (1 - y)^2 Q(x, Q^2)
$$

$$
- \frac{y^2}{2} \frac{\mathcal{R}(x, Q^2)}{1 + \mathcal{R}(x, Q^2)} (Q + \overline{Q})
$$

$$
+ \Big[-\frac{Mxy}{2E} + \frac{Mxy/E}{1 + \mathcal{R}(x, Q^2)} \Big] (Q + \overline{Q}) \Big). \quad (50)
$$

QE_ESF:D

QE_ESF:C12 Red: Carbon W1 Q2=2 GeV2

RedLDeuterium W1

Q2=2 GeV2

New Hall C data provides 1st determination of R_{A} - R_{d} In resonance region

- \rightarrow Large # of data points Comparable to E140
- \rightarrow Improved extractions at Q^2 < 3 in future Including phase I data

Future studies:

- Duality in separated SFs and EMC effect
- Moments of nuclar SFs

Deep inelastic neutrino total cross section are relatively well known. The following are *systematic errors in the high energy DIS total cross sections for W>1.8 GeV (Bodek-Yang)*

Integrating over y, The cross sections for neutrino (antineutrino) can then be approximately expressed in terms of (on average) the fraction antiquarks $f_{\overline{Q}} = \overline{Q}/(Q + \overline{Q})$ in the nucleon, and (on average) the ratio of longitudinal to transverse cross sections R as follows:

$$
\frac{d\sigma(\nu N)}{dx} \approx \frac{G_F^2 M E}{\pi} (Q + \overline{Q}) \Big[(1 - f_{\overline{Q}}) + \frac{1}{3} f_{\overline{Q}} - \frac{1}{6} \mathcal{R} \Big], \tag{51}
$$

and

$$
\frac{d\sigma(\overline{\nu}N)}{dx} \approx \frac{G_F^2 M E}{\pi} (Q + \overline{Q}) \left[\frac{1}{3} (1 - f_{\overline{Q}}) + f_{\overline{Q}} - \frac{1}{6} \mathcal{R} \right].
$$
 (52)

With $\langle R \rangle = 0.2$ and $\langle f_{\overline{Q}} \rangle = 0.1725$, we obtain $\langle \sigma_p / \sigma_\nu \rangle =$ 0.487, which is the world's experimental average value in the 30-50 GeV energy range. The above expressions are used to estimate the systematic error in the cross section originating from uncertainties in $\mathcal R$ and $f_{\overline{q}}$ (as shown in Table 3).

Table 3. Sources of systematic error in the predicted inelastic contribution to the total cross section on iron (for $W > 1.8 GeV$). The change (positive or negative) in the neutrino, antineutrino and the $\sigma_{\nu}/\sigma_{\nu}$ ratio that originate from a plus one standard deviation change in the ratio of transverse to longitudinal structure functions (R) , the fraction of antiquarks $(f_{\overline{q}})$, the axial quark-antiquark sea, and the overall normalization of the structure functions (N).

We want to achieve similar precision in the resonance region (RR) on H, D and nuclear targets, and also low Q inelastic,

Fermi motion and off-shell corrections to nucleons bound in nuclei

Arie Bodek and Tejin Cai University of Rochester

A. Bodek, M. E. Christy and B. Coppersmith, Eur. Phys. **Effective spectral function** J. C (2014) 74:3091

A. Bodek and J. L. Ritchie, Phys. Rev. D23, 1070 (1981). **Fermi-Motion in Nuclei**

W. B. Atwood and G. B. West, Phys.Rev. D7m 773 (1973); Fermi-Motion in Deuteron G. B. West, Ann. Phys. (NY), 656 (1972).

A. Bodek, Phys. Rev. D8 (1973) 2331; A. Bodek et al., Phys. Rev. D 20, 1471 (1979). **- off-shell corrections**

Impulse approximation

Fig. 1. 1p1h process: Scattering from an off-shell bound proton of momentum $P_i = k$ in a nucleus of mass A. The on-shell recoil excited $[A - 1]^*$ spectator nucleus has a momentum $P_{A-1}^* = P_s = -k$. The off-shell energy of the interacting nucleon is $E_i = M_A - \sqrt{(M_{A-1}*)^2 + k^2} = M_A \sqrt{(M_{A-1}+{\bf E_x})^2+k^2}$, where ${\bf E_x}$ is the excitation energy of the $[A-1]^*$ spectator nucleus.

Fig. 2. 2p2h process: Scattering from an off-shell bound neutron of momentum $P_i = -k$ from two nucleon short range correlations (quasi-deuteron). There is an on-shell spectator (A- $(2)^*$ on-shell nucleus and an on-shell spectator recoil nucleon with momentum $P_s = k$. The energy of the interacting off-shell nucleus is $E_i^P(SRC) = M_D - \sqrt{M_N + k^2} - \Delta_{SDC}^{N+P}$

The hadronic tensor for a target of mass M is given by:

$$
W_{\mu\nu} = -\mathcal{W}_1(\nu, q^2) \left[g_{\nu\mu} - \frac{q_{\mu}q\nu}{q^2} \right] + \frac{\mathcal{W}_2(\nu, q^2)}{M^2} \left[p_{\mu} - \frac{M\nu}{q^2} q_{\mu} \right] \left[p_{\mu} - \frac{M\nu}{q^2} q_{\mu} \right] (16)
$$

Where $g_{\mu\mu} = (-1,-1,-1,+1)$.

We use the Atwood-West[2] Fermi smearing formalism for electron scattering on deuterium which has been extended to neutrino scattering on nuclear targets by Bodek and Ritchie^[3]. We starts with the following relation between the hadronic tensor for a nucleus and the hadron tensor of bound nucleons.

$$
W_{\mu\nu}^{A}(q^{2},\nu) = Z W_{\mu\nu}^{p-S}(q^{2},\nu) + N W_{\mu\nu}^{n-S}(q^{2},\nu)
$$
 (17)

$$
W_{\mu\nu}^{S}(q^{2},\nu) = \int W_{\mu\nu}(q^{2},\nu_{w}) |\phi(k)|^{2} d^{3}k
$$

Equating the xx (11) components of the smeared tensor we get the following expression for the smeared structure function W_1 .

$$
\mathcal{W}_1^S(q^2, \nu) = \int [\mathcal{W}_1(q^2, \nu_w) + \frac{k_T^2}{2M^2} \mathcal{W}_2(q^2, \nu_w)] |\phi(k)|^2 d^3k
$$
\n(18)

Where, k_T is the transverse momentum of the nucleon $\frac{1}{27}$

Equating the 33 (zz) component and also using equation 18 we get the following expression for the smeared

structure function
$$
W_2
$$
.
\n
$$
W_2^S(q^2, \nu) = \int W_2(q^2, \nu_w) \left[\left(\frac{\nu'}{\nu} \right)^2 \left(1 - \frac{k_z^2 q^2}{M \nu' |q|} \right)^2 - \frac{k_T^2}{2M^2} \frac{q^2}{|q|^2} \right] |\phi(k)|^2 d^3k
$$
\n
$$
(19)
$$

For neutrino scattering one can derive [3] the following expression for \mathcal{W}_3 .

$$
\mathcal{W}_3^S(q^2,\nu) = \int \mathcal{W}_3(q^2,\nu_w) \Big[\frac{E i}{M} - \frac{k_z \nu}{M |q|} \Big] |\phi(k)|^2 \ d^3k
$$

Identifying the bound structure functions as functions of (Q^2, W') or equivalently (Q^2, ν_w) ensures energy conservation. However, gauge conservation is violated. One can restore gauge conservation by adding off-shell corrections to the structure functions, but there is no unique way of doing it. The above expressions yield a non-zero value of $R_{nucleus} = \sigma_L/\sigma_T$ at $Q^2 = 0$. Bodek (1973) showed introducing an off-shell correction to W_2 (e.g. replacing ν' with ν_W the above equations) results in $R_{nucleus}=0$ at $Q^2=0$.

We investigate three cases: (1) No tensor corrections, (2) With tensor corrections using ν' , and (3) Applying offshell corrections by replacing ν' with ν_w in the smearing equations.

Here, $P_i = (E_i, \mathbf{k}) = (M - \epsilon, \mathbf{k})$

$$
P_i^2 = E_i^2 - k^2
$$

\n
$$
W'^2 = P_i^2 + 2P_i * q - Q^2
$$

\n
$$
\nu' = P_i * q/M = (E_i \nu - |q|k_3)/M
$$

\n
$$
\nu' = \frac{W'^2 - P_i^2 + Q^2}{2M}
$$

\n
$$
\nu_w = \frac{W'^2 - M^2 + Q^2}{2M}
$$

\n
$$
\nu_w = \nu' + \frac{P_i^2 - M^2}{2M}
$$

\n(20)

$$
\begin{aligned} \mathcal{W}_1^S(q^2,\nu) &= \int [\mathcal{W}_1(q^2,\nu_w) \\ &+ \frac{k_T^2}{2M^2} \mathcal{W}_2(q^2,\nu_w)] |\phi(k)|^2 \ d^3k \end{aligned}
$$

$$
\mathcal{W}_{2}^{S}(q^{2},\nu)=\int \mathcal{W}_{2}(q^{2},\nu_{w})\Big[(\frac{\nu^{\prime}}{\nu})^{2}\Big(1-\frac{k_{z}^{2}q^{2}}{M\nu^{\prime}|q|}\Big)^{2}\\-\frac{k_{T}^{2}}{2M^{2}}\frac{q^{2}}{|q|^{2}}\Big]|\phi(k)|^{2}\;d^{3}k
$$

Our studies indicate:

- (1) The tensor corrections are essential at all Q2.
- (2) _{6/27/17} off-shell corrections are large at low Ω_{20} and are smaller at higher Q2.

Relations of structure functions to QCD and quark distributions: F2 is fundamental (not 2xF1)

 $\mathcal{F}_{2,LO}^{e/\mu}(x,Q^2) = \Sigma_i e_i^2 [xq_i(x,Q^2) + x\overline{q}_i(x,Q^2)].$

Only F2 (not F1) is related to the sum of quark and antiquark distributions. At high Q2 we use the variable x. At lower Q2, we include the target mass scaling variables

$$
\xi_{TM} = \frac{Q^2}{M\nu[1 + \sqrt{1 + Q^2/\nu^2}]},
$$

For neutrino structure functions, Quark-Hadron duality (when integrated over all v) is EXACT for the Adler sum rule down to Q2=0 **only for the Structure Function F2. F2** is the quark PDF distribution

In quark language the Adler sum rule is number of u quarks minus the number of d quarks in the nucleon is 1. (2 up and 1 down). It uses F2.

The Adler sum rules are derived from current algebra and are therefore valid at all values of Q^2 . The equations below are for *strangeness conserving(sc)* processes.

$$
|F_V(Q^2)|^2 + \int_{\nu_0}^{\infty} \mathcal{W}_{2n-sc}^{\nu-vector}(\nu, Q^2) d\nu
$$

$$
-\int_{\nu_0}^{\infty} \mathcal{W}_{2p-sc}^{\nu-vector}(\nu, Q^2) d\nu = 1
$$

Where the limits of the integrals are from pion threshold ν_0 where $W = M_{\pi} + M_P$ to $\nu = \infty$. At $Q^2 = 0$, the inelastic part of $\mathcal{W}_{2}^{\nu-vector}$ goes to zero, and the sum rule is saturated by the quasielastic contribution $|F_V(Q^2)|^2$.

FL includes:

- The effects of gluon radiation (QCD) which dominate at high Q2.
- Target mass effects (+ quark transverse momentum) which dominate at high x and intermediate $Q2$ (Jlab energy range).
- Higher twist effects which dominate near $Q2=0$.
- In QCD 2XF1 is derived from F2 by the subtraction of FL.

$$
2x\mathcal{F}_1=\mathcal{F}_2\left(1+\frac{4M^2x^2}{Q^2}\right)-\mathcal{F}_L(x,Q^2).
$$

$$
\mathcal{R}(x, Q^2) = \frac{\sigma_L}{\sigma_T} = \frac{\mathcal{F}_2}{2x\mathcal{F}_1} \left(1 + \frac{4M^2x^2}{Q^2}\right) - 1 = \frac{\mathcal{F}_L}{2x\mathcal{F}_1}
$$

For a complete understanding of the origin of the nuclear effects in electron scattering, we need to study nuclear effects in all three structure functions F2, R and F1 (and also in F3 if we include neutrino scattering).