

Determination of the axial mass parameter and the proton charge radius

Gil Paz

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA

Outline

- Introduction: the axial mass problem and the proton radius puzzle
- The z expansion
- Separating form factor and nuclear effects
- Conclusions and outlook

Introduction: The axial mass problem and The proton radius puzzle

- Quasiealstic νN scattering: $\nu_{\ell} + n \rightarrow \ell^- + p$
- At the quark level: $u_\ell + d \rightarrow \ell^- + u$
- Process "folded" twice

- Quasiealstic νN scattering: $\nu_{\ell} + n \rightarrow \ell^- + p$
- At the quark level: $u_\ell + d \rightarrow \ell^- + u$
- Process "folded" twice

Quark: $u_{\ell} + d \rightarrow \ell^{-} + u$

- Quasiealstic νN scattering: $\nu_{\ell} + n \rightarrow \ell^- + p$
- At the quark level: $u_\ell + d \rightarrow \ell^- + u$
- Process "folded" twice

Quark:
$$u_\ell + d \rightarrow \ell^- + u$$

 $\begin{array}{ccc} & & & & \\ & &$

Nucleus: ν_{ℓ} + nucleus $\rightarrow \ell^{-}$ + nucleus'

- Quasiealstic νN scattering: $\nu_{\ell} + n \rightarrow \ell^- + p$
- At the quark level: $u_\ell + d \rightarrow \ell^- + u$
- Process "folded" twice

Quark: $u_{\ell} + d \rightarrow \ell^{-} + u$

 $\begin{array}{ccc} & \downarrow & & \text{Form factor} \\ \text{Nucleon} & \nu_\ell + n \rightarrow \ell^- + p \\ & \downarrow & & \text{Nuclear model} \end{array}$

Nucleus: ν_{ℓ} + nucleus $\rightarrow \ell^{-}$ + nucleus'

• For precision need to control both form factors and nuclear effects

$\mathsf{Quark} \to \mathsf{Nucleon}$

• The interaction

$$\mathcal{L} = \frac{G_F}{\sqrt{2}} V_{ud}^* \, \bar{\ell} \gamma^{\alpha} (1 - \gamma^5) \nu \, \bar{u} \gamma_{\alpha} (1 - \gamma^5) d$$

Known current: $\bar{u}\gamma_{\alpha}(1-\gamma^5)d$

$\mathsf{Quark} \to \mathsf{Nucleon}$

The interaction

$$\mathcal{L} = rac{\mathcal{G}_{F}}{\sqrt{2}} V_{ud}^{*} \, ar{\ell} \gamma^{lpha} (1 - \gamma^{5})
u \, ar{u} \gamma_{lpha} (1 - \gamma^{5}) d$$

Known current: $\bar{u}\gamma_{\alpha}(1-\gamma^5)d$

• Parametrize $\langle p(p') | \bar{u} \gamma_{\alpha} (1 - \gamma^5) d | n(p) \rangle$ by form factors:

 F_1 , F_2 , F_p , F_A , functions of $q^2 = (p' - p)^2$

$\mathsf{Quark} \to \mathsf{Nucleon}$

The interaction

$$\mathcal{L} = rac{\mathcal{G}_{F}}{\sqrt{2}} V_{ud}^{*} \, ar{\ell} \gamma^{lpha} (1 - \gamma^{5})
u \, ar{u} \gamma_{lpha} (1 - \gamma^{5}) d$$

Known current: $\bar{u}\gamma_{\alpha}(1-\gamma^5)d$

• Parametrize $\langle p(p') | \bar{u} \gamma_{\alpha} (1 - \gamma^5) d | n(p) \rangle$ by form factors:

$$F_1$$
, F_2 , F_p , F_A , functions of $q^2 = \left(p' - p
ight)^2$

- F_1, F_2 related via isospin to EM form factors: $F_{1,2} = F_{1,2}^p F_{1,2}^n$
- F_P contribution suppressed by m_ℓ^2/m_N^2
- What do we know about $F_A(q^2)$?

- Consider a small q^2 expansion of $F_A(q^2)$
- $F_A(0) = -1.269$ known from neutron decay
- Axial radius: $r_A \equiv \sqrt{\frac{6F'_A(0)}{F_A(0)}}$ or axial mass: $m_A \equiv \sqrt{\frac{2F_A(0)}{F'_A(0)}}$

- Consider a small q^2 expansion of $F_A(q^2)$
- $F_A(0) = -1.269$ known from neutron decay

- Axial radius: $r_A \equiv \sqrt{\frac{6F_A'(0)}{F_A(0)}}$ or axial mass: $m_A \equiv \sqrt{\frac{2F_A(0)}{F_A'(0)}}$

• Common historical model for F_A : the dipole model

$$F_A = F_A(0) \left[1 - q^2 / (m_A^{
m dipole})^2\right]^{-2}$$

- Consider a small q^2 expansion of $F_A(q^2)$
- $F_A(0) = -1.269$ known from neutron decay
- Axial radius: $r_A \equiv \sqrt{\frac{6F_A'(0)}{F_A(0)}}$ or axial mass: $m_A \equiv \sqrt{\frac{2F_A(0)}{F_A'(0)}}$
- Common historical model for F_A : the dipole model

$$F_A = F_A(0) \left[1 - q^2 / (m_A^{
m dipole})^2\right]^{-2}$$

Warning: dipole model known to be inadequate for EM form factors!

- Consider a small q^2 expansion of $F_A(q^2)$
- $F_A(0) = -1.269$ known from neutron decay
- Axial radius: $r_A \equiv \sqrt{\frac{6F_A'(0)}{F_A(0)}}$ or axial mass: $m_A \equiv \sqrt{\frac{2F_A(0)}{F_A'(0)}}$
- Common historical model for F_A : the dipole model

$$F_A = F_A(0) \left[1 - q^2 / (m_A^{
m dipole})^2\right]^{-2}$$

- Warning: dipole model known to be inadequate for EM form factors!
- What can possibly go wrong?

• ν experiments before 1990: $m_A^{\text{dipole}} = 1.026 \pm 0.021 \text{ GeV}$ [Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)]

- ν experiments before 1990: $m_A^{\text{dipole}} = 1.026 \pm 0.021 \text{ GeV}$ [Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)]
- Axial mass $m_A^{\text{dipole}} = 1.35 \pm 0.17 \text{ GeV}$ [MiniBooNE Collaboration, PRD **81** 092005 (2010)] Similar result from other recent ν experiments

- ν experiments before 1990: $m_A^{\text{dipole}} = 1.026 \pm 0.021 \text{ GeV}$ [Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)]
- Axial mass $m_A^{\text{dipole}} = 1.35 \pm 0.17 \text{ GeV}$ [MiniBooNE Collaboration, PRD **81** 092005 (2010)] Similar result from other recent ν experiments
- What could be the source of the discrepancy? Nuclear effects, Form factors, or both...
- Discussion in literature focuses on nuclear effects: use dipole model for *F_A* and vary nuclear effects

- ν experiments before 1990: $m_A^{\text{dipole}} = 1.026 \pm 0.021 \text{ GeV}$ [Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)]
- Axial mass $m_A^{\text{dipole}} = 1.35 \pm 0.17 \text{ GeV}$ [MiniBooNE Collaboration, PRD **81** 092005 (2010)] Similar result from other recent ν experiments
- What could be the source of the discrepancy? Nuclear effects, Form factors, or both...
- Discussion in literature focuses on nuclear effects: use dipole model for *F_A* and vary nuclear effects
- What if we fix nuclear effects and vary F_A ?

- ν experiments before 1990: $m_A^{\text{dipole}} = 1.026 \pm 0.021 \text{ GeV}$ [Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)]
- Axial mass $m_A^{\text{dipole}} = 1.35 \pm 0.17 \text{ GeV}$ [MiniBooNE Collaboration, PRD **81** 092005 (2010)] Similar result from other recent ν experiments
- What could be the source of the discrepancy? Nuclear effects, Form factors, or both...
- Discussion in literature focuses on nuclear effects: use dipole model for *F_A* and vary nuclear effects
- What if we fix nuclear effects and vary F_A ?
- How to vary F_A ?

Proton charge radius

• Sachs electric and magnetic form factors

$$G_{E}^{p}(q^{2}) = F_{1}^{p}(q^{2}) + \frac{q^{2}}{4m_{p}^{2}}F_{2}^{p}(q^{2}) \qquad G_{M}^{p}(q^{2}) = F_{1}^{p}(q^{2}) + F_{2}^{p}(q^{2})$$
$$G_{E}^{p}(0) = 1 \qquad \qquad G_{M}^{p}(0) = \mu_{p} \approx 2.793$$

• Proton charge radius :
$$r_E^p \equiv \sqrt{rac{6G_E^{p\prime}(0)}{G_E^p(0)}}$$

Proton charge radius

• Sachs electric and magnetic form factors

$$G_{E}^{p}(q^{2}) = F_{1}^{p}(q^{2}) + \frac{q^{2}}{4m_{p}^{2}}F_{2}^{p}(q^{2}) \qquad G_{M}^{p}(q^{2}) = F_{1}^{p}(q^{2}) + F_{2}^{p}(q^{2})$$
$$G_{E}^{p}(0) = 1 \qquad \qquad G_{M}^{p}(0) = \mu_{p} \approx 2.793$$

• Proton charge radius :
$$r_E^p \equiv \sqrt{\frac{6G_E^{p'}(0)}{G_E^p(0)}}$$

• If you think the axial mass has a problem...

Proton charge radius

• Sachs electric and magnetic form factors

$$G_{E}^{p}(q^{2}) = F_{1}^{p}(q^{2}) + \frac{q^{2}}{4m_{p}^{2}}F_{2}^{p}(q^{2}) \qquad G_{M}^{p}(q^{2}) = F_{1}^{p}(q^{2}) + F_{2}^{p}(q^{2})$$
$$G_{E}^{p}(0) = 1 \qquad \qquad G_{M}^{p}(0) = \mu_{p} \approx 2.793$$

• Proton charge radius :
$$r_E^p \equiv \sqrt{\frac{6G_E^{p'}(0)}{G_E^p(0)}}$$

• If you think the axial mass has a problem...

Wait until you meet the proton radius puzzle!

• Lamb shift in muonic hydrogen [Pohl et al. Nature **466**, 213 (2010)] $r_E^p = 0.84184(67)$ fm

more recently $r_E^p = 0.84087(39)$ fm [Antognini et al. Science 339, 417 (2013)]

- CODATA value [Mohr et al. RMP 80, 633 (2008)]
 r^p_E = 0.87680(690) fm extracted mainly from electronic hydrogen more recently r^p_E = 0.87510(610) fm [Mohr et al. RMP 88, 035009 (2016)]
 spectroscopy alone: r^p_E = 0.87590(770) fm [Mohr et al. RMP 88, 035009 (2016)]
- 5 σ discrepancy! This is the proton radius puzzle

The z expansion

What did the PDG 2010 say?

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

p CHARGE RADIUS

This is the rms ch	arge	radius, $\sqrt{\langle r^2 \rangle}$.			
VALUE (fm)		DOCUMENT ID		TECN	COMMENT
0.8768±0.0069		MOHR	08	RVUE	2006 CODATA value
• • • We do not use the fo	ollow	ing data for ave	erages	, fits, lin	nits, etc. • • •
0.897 ±0.018		BLUNDEN	05		SICK 03 + 2 γ correction
0.8750 ± 0.0068		MOHR	05	RVUE	2002 CODATA value
$0.895 \pm 0.010 \pm 0.013$		SICK	03		$e p \rightarrow e p$ reanalysis
$0.830 \pm 0.040 \pm 0.040$	24	ESCHRICH	01		$ep \rightarrow ep$
0.883 ±0.014		MELNIKOV	00		1S Lamb Shift in H
0.880 ±0.015		ROSENFELDF	0Q.S		ep + Coul. corrections
0.847 ±0.008		MERGELL	96		e p + disp. relations

Citation: K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov)

0.877	± 0.024	WONG	94	reanalysis of Mainz ep data	
0.865	± 0.020	MCCORD	91	$e p \rightarrow e p$	
0.862	± 0.012	SIMON	80	$e p \rightarrow e p$	
0.880	± 0.030	BORKOWSKI	74	$e p \rightarrow e p$	
0.810	± 0.020	AKIMOV	72	$e p \rightarrow e p$	
0.800	± 0.025	FREREJACQ	66	$e p \rightarrow e p (CH_2 tgt.)$	
0.805	± 0.011	HAND	63	$e p \rightarrow e p$	
²⁴ ESCHRICH 01 actually gives $\langle r^2 \rangle$ = (0.69 ± 0.06 ± 0.06) fm ² .					

Gil Paz (Wayne State University)

L

Proton charge radius from scattering

- The PDG 2010 lists proton radii starting from 1963
- This is more then 50 years of radii extraction.
- You can find almost any value between 0.8-0.9 fm....
- Data sets have changed over the last 50 years but even using the same data sets different people get different values
- What is the problem?

Form Factors: What we don't know

- The form factors are non-perturbative objects.
- **Nobody** knows the *exact* functional form of G_E^p and G_M^p
- They don't have to have a dipole/polynomial/spline or any other functional form
- Including such models can bias your extraction of r_E^p and r_M^p

Form Factors: What we do know

- Analytic properties of $G_E^p(t)$ and $G_M^p(t)$ are known
- They are analytic outside a cut $t\in [4m_\pi^2,\infty]$

[Federbush, Goldberger, Treiman, Phys. Rev. 112, 642 (1958)]

• e - p scattering data is in t < 0 region

z expansion: map domain of analyticity onto unit circle

$$z(t, t_{ ext{cut}}, t_0) = rac{\sqrt{t_{ ext{cut}} - t} - \sqrt{t_{ ext{cut}} - t_0}}{\sqrt{t_{ ext{cut}} - t} + \sqrt{t_{ ext{cut}} - t_0}}$$

where $t_{\mathrm{cut}} = 4m_\pi^2$, $z(t_0, t_{\mathrm{cut}}, t_0) = 0$

• Expand $G_{E,M}^p$ in a Taylor series in z: $G_{E,M}^p(q^2) = \sum_{k=0}^{\infty} a_k \, z(q^2)^k$

• [Epstein, GP, Roy PRD 90, 074027 (2014)]

• [Epstein, GP, Roy PRD **90**, 074027 (2014)] $G_M(Q^2)$ for proton (blue, above axis) and neutron (red, below axis)

• [Epstein, GP, Roy PRD **90**, 074027 (2014)] $G_M(Q^2)$ for proton (blue, above axis) and neutron (red, below axis)

 $G_M(z)$ for proton (blue, above axis) and neutron (red, below axis)

• See also R.J. Hill talk at FPCP 2006 [hep-ph/0606023]

z expansion for bayons

- z expansion is the method for meson form factors, e.g. [Flavor Lattice Averaging Group, EPJ C 74, 2890 (2014)]
- Starting in 2010 applied to baryon form factors [Hill, GP PRD 82 113005 (2010)]
- Now applied successfully to extract r_E^p , r_M^p , r_M^n , m_A ...

Example 1: r_E^p in PDG 2016

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

p CHARGE RADIUS

This is the rms electric charge radius, $\sqrt{\langle r_E^2 \rangle}$.

VALUE (fm)		DOCUMENT ID		TECN	COMMENT
0.8751	± 0.0061		MOHR	16	RVUE	2014 CODATA value
0.8408	7±0.0002	5±0.00029	ANTOGNINI	13	LASR	μp -atom Lamb shift
• • We do not use the following data for averages, fits, limits, etc. • • •						
0.895	± 0.014	±0.014 ¹	LEE	15	SPEC	Just 2010 Mainz data
0.916	± 0.024		LEE	15	SPEC	World data, no Mainz
0.8775	± 0.0051		MOHR	12	RVUE	2010 CODATA, ep data
0.875	± 0.008	± 0.006	ZHAN	11	SPEC	Recoil polarimetry
0.879	± 0.005	± 0.006	BERNAUER	10	SPEC	$e p \rightarrow e p$ form factor
0.912	± 0.009	± 0.007	BORISYUK	10		reanalyzes old <i>e p</i> data
0.871	± 0.009	± 0.003	HILL	10		z-expansion reanalysis
0.84184	4±0.00036	5 ± 0.00056	POHL	10	LASR	See ANTOGNINI 13
0.8768	± 0.0069		MOHR	80	RVUE	2006 CODATA value
0.844	$^{+0.008}_{-0.004}$		BELUSHKIN	07		Dispersion analysis
0.897	± 0.018		BLUNDEN	05		SICK 03 + 2 γ correction
0.8750	± 0.0068		MOHR	05	RVUE	2002 CODATA value
0.895	± 0.010	± 0.013	SICK	03		$e p \rightarrow e p$ reanalysis

[Hill, GP PRD **82** 113005 (2010)] [Lee, Arrington, Hill, PRD **92**, 013013 (2015)]

Gil Paz (Wayne State University)

axial mass parameter and proton charge radiu

Example 2: r_M^p in PDG 2016

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

p MAGNETIC RADIUS

This is the rms magnetic radius, $\sqrt{\langle r_M^2 \rangle}$.

VALUE (fm)	DOCUMENT ID		TECN	COMMENT		
0.776±0.034±0.017	¹ LEE	15	SPEC	Just 2010 Mainz data		
• • • We do not use the following data for averages, fits, limits, etc. • •						
0.914 ± 0.035	LEE	15	SPEC	World data, no Mainz		
0.87 ± 0.02	EPSTEIN	14		Using ep, en, $\pi\pi$ data		
$0.867 \pm 0.009 \pm 0.018$	ZHAN	11	SPEC	Recoil polarimetry		
$0.777 \pm 0.013 \pm 0.010$	BERNAUER	10	SPEC	$e p \rightarrow e p$ form factor		
$0.876 \pm 0.010 \pm 0.016$	BORISYUK	10		Reanalyzes old $e p \rightarrow e p$ data		
$0.854 {\pm} 0.005$	BELUSHKIN	07		Dispersion analysis		

¹Authors also provide values for a combination of all available data.

[Epstein, GP, Roy PRD **90**, 074027 (2014)] [Lee, Arrington, Hill, PRD **92**, 013013 (2015)]

Example 3: r_M^n in PDG 2016

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

n MAGNETIC RADIUSThis is the rms magnetic radius, $\sqrt{\langle r_M^2 \rangle}$.VALUE (fm)COMMENT ID0.864 ± 0.009 OUR AVERAGE0.89 ± 0.03 EPSTEIN14Using ep, en, $\pi\pi$ data0.862 ± 0.009 BELUSHKIN07Dispersion analysis

[Epstein, GP, Roy PRD 90, 074027 (2014)]

Example 4: more *z* expansion for baryons

Partial list:

- Heavy-baryon form factors:
- [Khodjamirian, Klein, Mannel Wang, JHEP 1109, 106 (2011)]
- [Lattice: Detmold, Lehner, Meinel PRD 92, 034503 (2015)]
- |V_{ub}|/|V_{cb}| using baryonic decays
 [LHCb Collaboration, Nature Phys. 11, 743 (2015)]
- Strange nucleon EM form factors:

[Lattice: Green et al., Phys. Rev. D 92 031501 (2015)]

• Nucleon EM form factors

[Lattice: Alexandrou et al., arXiv:1706.00469]

The bottom line

- Scattering:
- World e p data [Lee, Arrington, Hill '15] $r_E^p = 0.918 \pm 0.024$ fm
- Mainz e p data [Lee, Arrington, Hill '15] $r_E^p = 0.895 \pm 0.020$ fm
- Proton, neutron and π data [Hill , GP '10] $r_E^p=0.871\pm0.009\pm0.002\pm0.002$ fm
- Muonic hydrogen
- [Pohl et al. Nature **466**, 213 (2010)] $r_{E}^{p} = 0.84184(67)$ fm
- [Antognini et al. Science **339**, 417 (2013)] $r_E^p = 0.84087(39)$ fm
- Using z expansion, scattering disfavors muonic hydrogen
- Is there a problem with muonic hydrogen theory?

The bottom line

- Scattering:
- World e p data [Lee, Arrington, Hill '15] $r_E^p = 0.918 \pm 0.024$ fm
- Mainz e p data [Lee, Arrington, Hill '15] $r_E^p = 0.895 \pm 0.020$ fm
- Proton, neutron and π data [Hill , GP '10] $r_E^p=0.871\pm0.009\pm0.002\pm0.002$ fm
- Muonic hydrogen
- [Pohl et al. Nature **466**, 213 (2010)] $r_{E}^{p} = 0.84184(67)$ fm
- [Antognini et al. Science **339**, 417 (2013)] $r_F^p = 0.84087(39)$ fm
- Using z expansion, scattering disfavors muonic hydrogen
- Is there a problem with muonic hydrogen *theory*? Potentially yes! [Hill, GP PRL **107** 160402 (2011)], [Hill, GP PRD **95**, 094017 (2017)]

Separating form factor and nuclear effects

• Using the z expansion we can vary F_A

• Expand
$$F_A$$
 in a Taylor series in z: $F_A = \sum_{k=0}^{\infty} a_k \, z(q^2)^k$

- $|z(q^2)| < 1$ so in practice we need only a few terms
- For the extraction to be independent of the # of parameters need to bound |a_k|: e.g. |a_k| ≤ 5 and |a_k| ≤ 10

- Example 1: extracting m_A using the z expansion [Bhattacharya, Hill, GP PRD 84 073006 (2011)]
 from MiniBooNE's neutrino data [MiniBooNE Collaboration, PRD 81 092005 (2010)]
- Mostly follow MiniBooNE's analysis: use RFG as nuclear model

Neutrino: z expansion

 Our z expansion fit to MiniBooNE data (Assuming RFG): Red: dipole, Blue: z, |a_k| ≤ 5, Green: z, |a_k| ≤ 10

• Our fit using z expansion: $m_A = 0.85^{+0.22}_{-0.07} \pm 0.09$ GeV Our fit using dipole model: $m_A^{\text{dipole}} = 1.29 \pm 0.05$ GeV MiniBooNE's fit: $m_A^{\text{dipole}} = 1.35 \pm 0.17$ GeV

 Example 2: extracting m_A using the z expansion [Bhattacharya, GP, Tropiano, PRD 92, 113011 (2015)] from MiniBooNE's antineutrino data [MiniBooNE Collaboration, PRD 88, 032001 (2013)]

- Example 2: extracting m_A using the z expansion [Bhattacharya, GP, Tropiano, PRD 92, 113011 (2015)] from MiniBooNE's antineutrino data [MiniBooNE Collaboration, PRD 88, 032001 (2013)]
- For scattering off mineral oil $C_n H_{2n+2}$ $(n \sim 30)$:
- $\bar{\nu}$ can scatter off protons in C and protons in H

- Example 2: extracting m_A using the z expansion [Bhattacharya, GP, Tropiano, PRD 92, 113011 (2015)] from MiniBooNE's antineutrino data [MiniBooNE Collaboration, PRD 88, 032001 (2013)]
- For scattering off mineral oil $C_n H_{2n+2}$ $(n \sim 30)$:
- $\bar{\nu}$ can scatter off protons in C and protons in H
- MiniBooNE used different m^{dipole}_A for C and H
 Problematic! the axial mass is a fundamental property of the nucleon
 Might hide nuclear effects in the axial mass
- We use the same F_A for C and H and extract one axial mass

 Our z expansion fit to MiniBooNE data (Assuming RFG): Red: dipole, Blue: z, |a_k| ≤ 5, Green: z, |a_k| ≤ 10

- Our fit using z expansion:
 Our fit using dipole model:
- Neutrino data z expansion:
- Neutrino data dipole model:

- $m_A = 0.84^{+0.12}_{-0.04} \pm 0.11 \text{ GeV} \ m_A^{ ext{dipole}} = 1.27^{+0.03}_{-0.04} \text{ GeV}$
- $m_A = 0.85^{+0.22}_{-0.07} \pm 0.09 \,\, {
 m GeV} \ m_A^{
 m dipole} = 1.29 \pm 0.05 \,\, {
 m GeV}$

Comparing F_A from ν and $\bar{\nu}$ data

• We can also extract *F_A* directly from MiniBooNE data neutrino data (purple circles) and antineutrino data (green diamonds).

z expansion and possible nuclear effects

- ν data using the z expansion: $\bar{\nu}$ data using the z expansion:
- ν data using dipole model:

 $\bar{\nu}$ data using dipole model:

 $egin{aligned} m_A &= 0.85^{+0.22}_{-0.07} \pm 0.09 \,\, {
m GeV} \ m_A &= 0.84^{+0.12}_{-0.04} \pm 0.11 \,\, {
m GeV} \ m_A^{
m dipole} &= 1.29 \pm 0.05 \,\, {
m GeV} \ m_A^{
m dipole} &= 1.27^{+0.03}_{-0.04} \,\, {
m GeV} \end{aligned}$

z expansion and possible nuclear effects

- ν data using the z expansion: $\bar{\nu}$ data using the z expansion:
- ν data using dipole model: $\bar{\nu}$ data using dipole model:

```
egin{aligned} m_A &= 0.85^{+0.22}_{-0.07} \pm 0.09 \,\, {
m GeV} \ m_A &= 0.84^{+0.12}_{-0.04} \pm 0.11 \,\, {
m GeV} \ m_A^{
m dipole} &= 1.29 \pm 0.05 \,\, {
m GeV} \ m_A^{
m dipole} &= 1.27^{+0.03}_{-0.04} \,\, {
m GeV} \end{aligned}
```

 The error on m_A not symmetric ⇒ fit allows larger m_A ⇒ increase cross section ⇒ problem with nuclear model?

z expansion and possible nuclear effects

- ν data using the z expansion:
 ν data using the z expansion:
- ν data using dipole model:
 ν data using dipole model:

```
egin{aligned} m_A &= 0.85^{+0.22}_{-0.07} \pm 0.09 \,\, {
m GeV} \ m_A &= 0.84^{+0.12}_{-0.04} \pm 0.11 \,\, {
m GeV} \ m_A^{
m dipole} &= 1.29 \pm 0.05 \,\, {
m GeV} \ m_A^{
m dipole} &= 1.27^{+0.03}_{-0.04} \,\, {
m GeV} \end{aligned}
```

- The error on m_A not symmetric ⇒ fit allows larger m_A
 ⇒ increase cross section ⇒ problem with nuclear model?
- Crude qualitative check: multiply $d\sigma_c$ by a constant factor
- factor >1: error more symmetric, factor <1: asymmetry grows
- both cases little change in $m_A^{
 m dipole}$
- Hint of a problem with nuclear model? Combine z expansion and correlated Fermi gas (CFG) nuclear model [Bhattacharya, Cohen, Hen, GP, Piasetzky, Tockstein, Wieske (*in progress*)]

Example 3: Deuterium target data

• Even more recently:

z-expansion analysis of deuterium target data [Meyer, Betancourt, Gran, Hill PRD **93** 113015 (2016)]

• They extract
$$r_A = \sqrt{12}/m_A$$
 and find $r_A^2 = 0.46(22)$ fm² or $r_A = 0.68^{+0.15}_{-0.19}$ fm

• Consistent with MiniBooNE neutrino and antineutrino data, e.g. $r_A = 0.81^{+0.05}_{-0.10} \pm 0.14$ fm [Bhattacharya, GP, Tropiano, PRD **92**, 113011 (2015)]

Example 3: Deuterium target data

- z-expansion analysis of deuterium target data [Meyer, Betancourt, Gran, Hill PRD 93 113015 (2016)]
- They also extract the axial form factor

•
$$F_A = \sum_k a_k z(q^2)^k$$

 $[a_1, a_2, a_3, a_4] = [2.30(0.13), -0.6(1.0), -3.8(2.5), 2.3(2.7)]$

Example 4: Lattice QCD

 Lattice QCD calculation of F_A using the z expansion is underway [Meyer, Hill, Kronfeld, Li, Simone, arXiv:1610.04593]

- The future neutrino program requires precision
- Need better control of form factors, in particular F_A
- Axial mass problem: different m_A^{dipole} for different experiments

- The future neutrino program requires precision
- Need better control of form factors, in particular F_A
- Axial mass problem: different m_A^{dipole} for different experiments
- Using *z* expansion: *consistent* values for axial mass:
- MiniBooNE ν data using the z expansion: $m_A = 0.85^{+0.22}_{-0.07} \pm 0.09$ GeV [Bhattacharya, Hill, GP PRD **84** 073006 (2011)]
- MiniBooNE $\bar{\nu}$ data using the z expansion: $m_A = 0.84^{+0.12}_{-0.04} \pm 0.11$ GeV [Bhattacharya, GP, Tropiano PRD **92** 113011 (2015)]
- Deuterium target data using the z expansion: $r_A^2 = 0.46(22)$ fm² [Meyer, Betancourt, Gran, Hill PRD **93** 113015 (2016)]

- Next step: combine z expansion and CFG nuclear model [Bhattacharya, Cohen, Hen, GP, Piasetzky, Tockstein, Wieske (*in progress*)]
- The *z* expansion allows to control form factor effects *separately* from nuclear effects
- I invite the community to use the *z* expansion with a variety of nuclear models