

Electron neutrino quasi elastic scattering in MINERVA

Jiyeon Han, University of Pittsburgh on behalf of MINERvA collaboration

Electron neutrino quasi elastic scattering

Electron neutrino quasi elastic (QE) scattering

ve QE differential cross section

- \bullet Measurement is important to ν_e appearance measurement
- Q² dependence of $\frac{\nu_e}{\nu_e}(CCQE)$ constrains cross section difference
- Present the published result of cross section in LE and prospect for ME data

Event selection

Signal definition of v_e QE-like process:

- One electron or positron
- Any number of nucleons
- No other hadrons
- No photons with energies above 15MeV

Good electron identification is important key of the measurement

Event selection for QE-like events:

- Fiducial and track quality cut
- Electron object selection: "kNN" method for electron identification

• Photon rejection : Energy deposition pattern early in track helps discriminate between e^\pm vs. γ

CCQE-like event selection:
 Signal is an isolated process
 Require not much activity outside e[±] cone

Background prediction

or near event vertex region

Leading background is non-QE charged-current process (Resonance, DIS) Neutral-current π^0 background is larger in ME (~50% more than LE)

 \Rightarrow Shower shape asymmetry along particle axis improves to discriminate π^0 from e

 $\pi^0 \stackrel{\mathsf{Y} \longrightarrow \mathsf{e}}{=} \mathsf{e}$

Shower shape of π^0 is not symmetric along the particle axis

MINERVA detector

Minerva is a dedicated on-axis neutrino-nucleus scattering experiment running at FNAL in NuMI beam

Cross section measurement of Q²

four-momentum energy transfer (Q²) $\Rightarrow Q^2 = -m_e^2 + 2E_{\nu}(E_e - \sqrt{E_e^2 - m_e^2\cos\theta_e})$

Ve VS. Vμ comparison

PRL 116, 081802 (2016)

PRL 111, 022502 (2013)

Absolutely normalized (3.49 × 10²⁰ P.O.T.)
Data: inner errors statistical simulation: statistical errors only

Pata

Absolutely normalized (3.49 × 10²⁰ P.O.T.)
Data: inner errors statistical errors only

Pata

Simulation

Absolutely normalized (3.49 × 10²⁰ P.O.T.)
Data: inner errors statistical errors only

Pata

Simulation

Occupancy

Absolutely normalized (3.49 × 10²⁰ P.O.T.)
Data: inner errors statistical errors only

Occupancy

Absolutely normalized (3.49 × 10²⁰ P.O.T.)
Data: inner errors statistical errors only

Occupancy

Absolutely normalized (3.49 × 10²⁰ P.O.T.)
Data: inner errors statistical errors only

Occupancy

Cross section differences arise from lepton mass terms and nuclear effects
Both v_e and v_μ cross sections agree with predictions within uncertainties

Syst. errors partially cancel in ratio
 ν_e CCQE stat. errors dominant

 \Rightarrow Goal is to further improve the precision of v_e CCQE measurement

Fractional uncertainty projection in ME

- Measurement precision improves from statistics increase ME
- Systematic errors are expected to be improved in ME (Flux, Detector, Modeling)

Summary

- Cross section of electron neutrino quasi elastic is measured using LE data
- Cross section ratio of v_e to v_μ is compared and still agrees with prediction
- Measurement is expected to have better precision:
 - Reduce the stat. uncertainty by half, especially in high Q² region
 - Expect the reduction of syst. uncertainty from improvement of modeling
- \Rightarrow Improve the sensitivity of cross section ratio ($\mathbf{V}_{e}/\mathbf{V}_{\mu}$) measurement