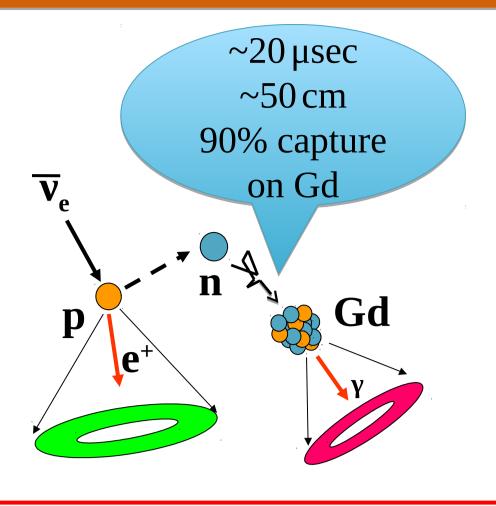


Modeling γ-rays from the thermal neutron capture on gadolinium based on JPARC-ANNRI data

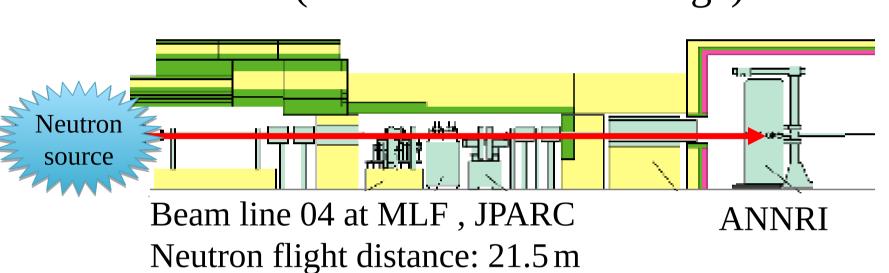

Authors: S.Lorenz, T.Tanaka (Okayama Univ.)

K.Hagiwara, P.K.Das, R.Dhir, T.Kayano, Y.Koshio, T.Mori, M.Sakuda, I.Ou, Y.Yamada (Okayama Univ.) T.Yano (Kobe Univ.), H.Harada, N.Iwamoto, A.Kimura, S.Nakamura (Japan Atomic Energy Agency), W.Focillon, M.Gonin (École polytechnique)

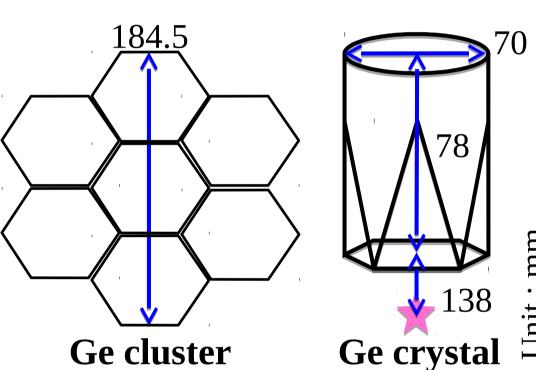
1. Introduction

Gadolinium (Gd, Z=64) has the largest thermal neutron capture cross-section among all stable nuclei. Moreover, the capture reaction emits several γ -rays with ~8 MeV total energy. This makes Gd a good material to enhance the tagging of neutrons from the common *inverse beta decay* (IBD) detection reaction $\overline{V}_e + p \rightarrow n + e^+$.

Present and future neutrino experiments using Gd


Technology	Experiment (Measurement)				
Water Cherenkov	SK-Gd (~2018; SRN, SN ν, Solar ν, Atm. ν, p ⁺ decay), EGADS (R&D for SK-Gd),				
	ANNIE (v interaction and neutron yield studies), PANDA (reactor monitoring)				
Liquid scintillator	Daya Bay, RENO, Double Chooz (Mixing angle θ_{13})				

Super-Kamiokande will load $Gd_2(SO_4)_3$ in 2018 (\rightarrow SK-Gd)!


Precise γ -ray spectrum of Gd(n, γ) reaction is necessary! \rightarrow We study and model the γ -rays from this reaction based on an experiment.

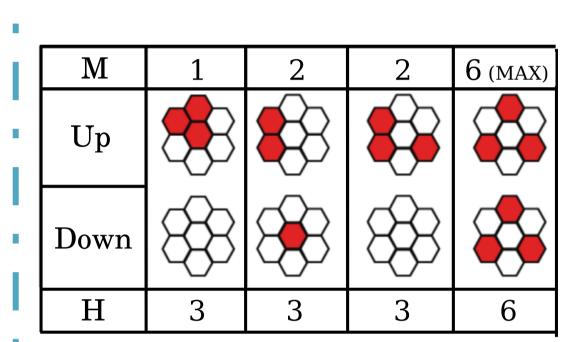
2. ANNRI @ MLF, JPARC

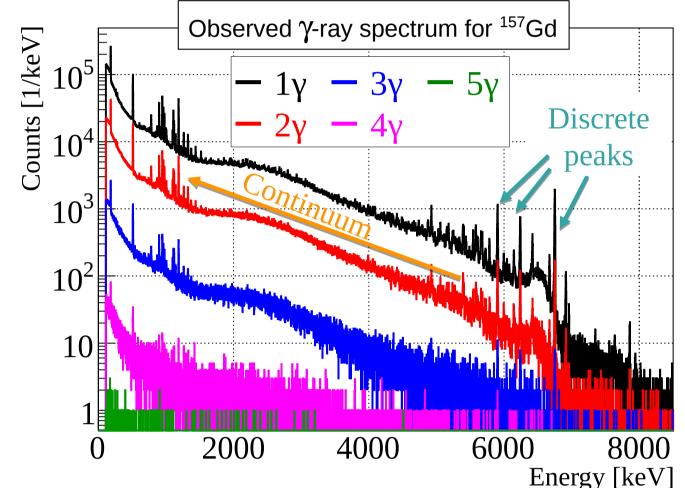
Neutron beam ($E_n = 1 \text{ meV-}10 \text{ eV}$; $\Delta E_n/E_n \sim 1\%$) to ANNRI. We placed different target materials, nat. Gd (99.99%), enriched 155 Gd (91.65%), enriched 157 Gd (88.4%) and calibration sources / targets (22 Na, 60 Co, 137 Cs, 152 Eu, NaCl(n, γ)), between its two clusters (22% coverage) of seven germanium crystals ($\Delta E_{\gamma} \sim 9 \text{ keV}$ @ 1.3 MeV). Each cluster has a BGO veto (55% combined coverage).

Trigger condition: ≥0.1 MeV in one germanium cluster and

< 0.1 MeV in corresponding BGO veto; both clusters are independent</p>

Event selection: Neutron energy between 4 and 100 meV;


• energy in Ge >0.11 MeV


Event classification: Assigned multiplicity value (M: number of

disconnected sub-clusters) and hit value (H: number of hit crystals)

γ-ray energy reconstruction:

Energy deposition in sub-cluster

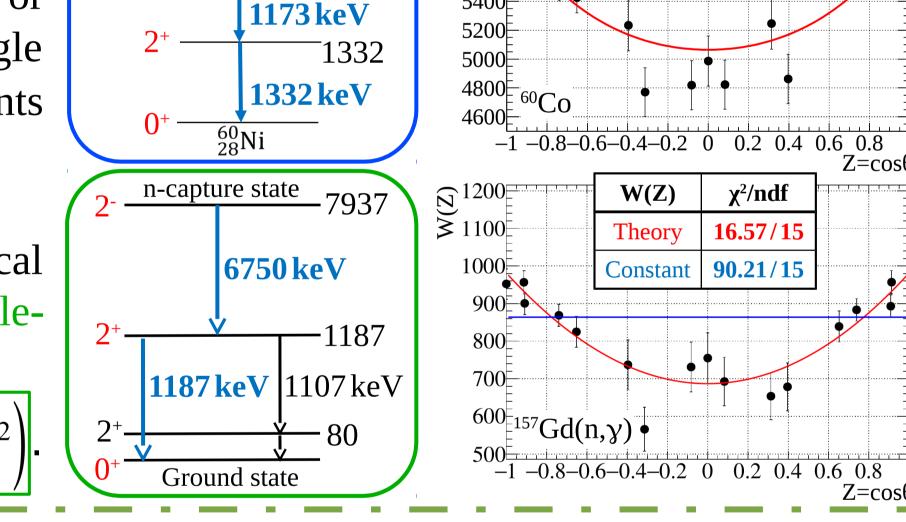
W(Z)

χ²/ndf

21.81/16

142.4/16

3. Results for ¹⁵⁷Gd


For the 157 Gd target, we identified 15 discrete peaks with a total contribution of $(6.8\pm0.1)\%$ to the overall spectrum in our data (E>0.11 MeV). Relative intensities of the prompt γ -rays agree with values from CapGam [NNDC] within 30%. The discrete levels are directly included into our model.

	γ-ray energies [keV]					Our phodute
No.	1st	2nd	3rd	4th	5th	Our absolute intensity [%]
1	7937	_	_	_	_	$(5.3\pm0.4)\times10^{-3}$
2	7857	80	_	_	_	$(2.3\pm0.1)\times10^{-2}$
3	6960		_	<u> </u>	_	$(2.0\pm0.1)\times10^{-2}$
4	6914	944	80	<u> </u>	_	0.13±0.06
5	6750	1187	_	<u>—</u>	_	1.19±0.07
3	0/30	1107	80	_	_	1.19±0.07
C	6 6672	1187	80	<u> </u>	_	0.16±0.02
O		1004	182	80	_	$(2.8\pm0.6)\times10^{-2}$
	7 6420	1517	_	_	_	0.12±0.01
7		1438	80	_	_	0.13±0.01
		1256	182	80	_	0.06±0.01
8	6601	_	_	<u>-</u>	_	(15.4±0.7)×10 ⁻²
	5903	1010	944	80	_	0.46±0.03
0		875	898	182	80	0.29±0.03
9		769	1186	80	_	0.25±0.03
		676	1097	182	80	0.15±0.01
10	5784	_	_	_	_	(19.2±0.8)×10 ⁻²
11	5669	_	_	_	_	0.62±0.02
12	5595		_		_	0.65±0.02
13	5543		_	<u>—</u>	_	(23.1±0.9)×10 ⁻²
14	5436	<u> </u>	_	_		(15.7±0.6)×10 ⁻²
15	5167	_			_	0.58±0.02

We study the angular correlation W(Z), Z=cos θ , of γ -rays with given energies E_1 , E_2 from ⁶⁰Co decay and ¹⁵⁸Gd disexcitation using two- γ -ray events. For a given Ge crystal pair (i,j) with intermediate angle θ and efficiencies $\varepsilon_i(E)$, $\varepsilon_j(E)$, the number of events is $N_{ij} = N_0 \, \varepsilon_i(E_1) \, \varepsilon_j(E_2) \, W(Z)$.

We find good agreement with the theoretical predictions for quadrupole-quadrupole and dipole-quadrupole transitions [PR 78, 5],

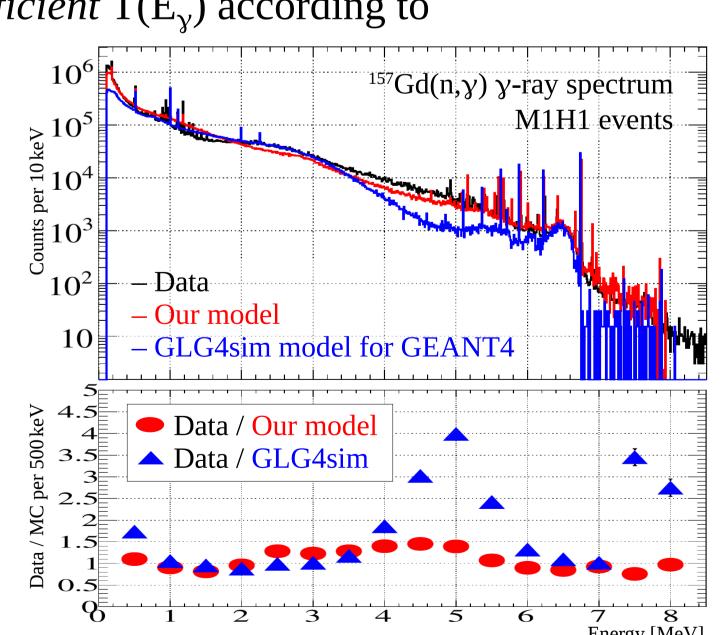
$$W(Z) = A\left(1 + \frac{1}{8}Z^2 + \frac{1}{24}Z^4\right)$$
 and $W(Z) = A\left(1 + \frac{3}{7}Z^2\right)$.

> 6200

5800

5400

2505


The continuum part of the ¹⁵⁸Gd spectrum (transitions within the energy region of high *nuclear level density* (NLD) $\rho(E)$ or down to the domain of discrete nuclear levels) contributes (93.2±0.1)% in our data. For our model, we compute the probability P for the transition from level E_a to E_b under emission of a γ -ray (E_{γ} = E_a - E_b) with the *transmission coefficient* $T(E_{\gamma})$ according to

$$\frac{\mathrm{d}P}{\mathrm{d}E}(E_a, E_b) \Delta E_b = \frac{T(E_\gamma)\rho(E_b)\Delta E_b}{\int_0^{E_a} T(E_\gamma)\rho(E_b)\mathrm{d}E_b}, \ T(E_\gamma) = 2\pi E_\gamma^3 f(E_\gamma, T).$$

We use the HFB-model [RIPL-3] for $\rho(E)$ and the EGLO photon strength function (PSF) [Nucl. Data Sheets 110]

$$f(E_{\gamma},T) = \sum_{i=1}^{2} \left[\frac{E_{\gamma} \Gamma_i(E_{\gamma},T)}{\left(E_{\gamma}^2 - E_i^2\right)^2 + E_{\gamma}^2 \Gamma_i^2(E_{\gamma},T)} + 0.7 \frac{\Gamma_i(E_{\gamma} = 0,T)}{E_i^3} \right] \sigma_i \Gamma_i$$

T is the nuclear tempearture. E1 resonance parameter values for energies E_i , strengths σ_i and widths Γ_i are from [PRC 47, 312]. For single- γ -ray events, our model agrees within about $\pm 50\%$ with the data at $\Delta E = 0.5$ MeV.

158Gd excited state E_a $E_y = E_a - E_b$ E_b 158Gd ground state

4. Summary

- Gadolinium is used to enhance the delayed signal in IBD events.
- We measured γ -rays from the 157 Gd(n, γ) reaction with the ANNRI detector.
- We identified 15 discrete peaks in the spectrum and added them to our model.
- Our model agrees within about $\pm 50\%$ with our data ($\Delta E=0.5\,\mathrm{MeV}$).
- For 60 Co and 157 Gd(n, γ) we see the expected angular correlation of γ -rays.