Short-Range Correlations in Nuclei Or Hen – MIT

Laboratory for Nuclear Science @

NuINT17, June 26th 2017, U. Toronto, Canada.

Nuclear Physics and Neutrino Oscillations

Issue I: <u>Incident neutrino energy reconstruction</u> from the measured final state.

Issue II: Interaction cross-section defines the 'no oscillation' baseline.

Issue III: proton-neutron dynamics can induce non CPV differences between neutrino and anti-neutrino interaction rates.

• • •

Nuclear Physics Inputs:

- Model of the *Nucleus*.
- Model of the Interaction.

Nuclear Physics and Neutrino Oscillations

Using JLab CLAS <u>data</u> to study incident neutrino energy reconstruction and reaction modeling.

Nuclear Physics and Neutrino Oscillations

<u>Today:</u> Improve modeling of the nuclear ground state, with emphasis on Short-Range Correlations

Nuclear Many-Body Challenge

Many-body Schrödinger Equation

$$\sum_{i} \left\{ -\frac{\hbar^2}{2m_i} \nabla_i^2 \Psi(\vec{r}_1, \dots, \vec{r}_N, t) \right\} + U(\vec{r}_1, \dots, \vec{r}_N) \Psi(\vec{r}_1, \dots, \vec{r}_N, t) = i\hbar \frac{\partial}{\partial t} \Psi(\vec{r}_1, \dots, \vec{r}_N, t)$$

Main Challenges:

- 1. No 'fundamental' Interaction.
- 2. Complex phenomenological parametrizations (e.g. over 18 operators)

Solution: Effective Theories

* Should converge to exact solution

Solution: Effective Theories

* Should converge to exact solution

Long-range dynamics

- Described overall well by mean-field models.
- Non negligible pairing effects at long and short distances (/ low and high energy).
- Today's focus is on highenergy, short-range, pairing

What Are SRC?

SRC are pairs of nucleon that are close together in the nucleus (wave functions overlap)

=> Momentum space: pairs with <u>high relative</u> <u>momentum and low c.m. momentum</u> compared to the Fermi momentum (k_F)

What do we know about SRC

High-Momentum Tails

- Short-range two-body forces create highmomentum tails to the nuclear momentum distribution
- Expected to be due to pairs of short-range correlated nucleons.
- Ongoing experimental program to 'dissect' these high-momentum tails.

(e,e') cross section at different kinematics are sensitive to different 'parts' of the nuclear momentum distribution.

$$(q+p_A-p_{A-1})^2 = p_f^2 = m_N^2$$

- A/d (e,e') cross section ratios sensitive to n_A(k)/n_d(k)
- Observed scaling for $x_B \ge 1.5$.

 $=> n_A(k>k_F) = a_2(A) \times n_d(k)$

L. Frankfurt et al. , Phys. Rev. C **48**, 2451 (1993). K. Egiyan et al., Phys. Rev. C **68**, 014313 (2003). N. F

K. Egiyan et al., PRL 96, 082501(2006).

N. Fomin et al., Phys. Rev. Lett. 108, 092502 (2012).

- A/d (e,e') cross section ratios sensitive to n_A(k)/n_d(k)
- Observed scaling for $x_B \ge 1.5$.

 $=> n_A(k>k_F) = a_2(A) \times n_d(k)$

L. Frankfurt et al. , Phys. Rev. C **48**, 2451 (1993). K. Egiyan et al., Phys. Rev. C **68**, 014313 (2003).

Α	a ₂ (A/D)	Α	a ₂ (A/D)
³ He	2.1 ± 0.1	¹² C	4.7 ± 0.2
⁴ He	3.6 ± 0.1	⁶³ Cu	5.2 ± 0.2
⁹ Be	3.9 ± 0.1	¹⁹⁷ Au	5.1 ± 0.2

O. Hen et al., PRC 85, 047301 (2012)

K. Egiyan et al., PRL 96, 082501 (2006)

$$=> n_A(k>k_F) = a_2(A) \times n_d(k)$$

³ He		¹² C	
⁴ He	3.6 ± 0.1	⁶³ Cu	5.2 ± 0.2
⁹ Be	3.9 ± 0.1	¹⁹⁷ Au	5.1 + 0.4

L. Frankfurt et al. , Phys. Rev. C **48**, 2451 (1993). K. Egiyan et al., Phys. Rev. C **68**, 014313 (2003). O. Hen et al., PRC 85, 047301 (2012)

K. Egiyan et al., PRL 96, 082501 (2006)

What do we know about SRC

Exclusive probes for SRC structure

Breakup the pair => Detect both nucleons => Reconstruct 'initial' state

Interlude: Reaction Mechanisms

What we want:

SRC

Interlude: Reaction Mechanisms

Trick: choose 'good' kinematics!

- x_B > 1.2
- Q² ~ 2 (GeV/c²)
- Anti-Parallel
 Kinematics

<u>A word on FSI:</u>

- Large-Q² (or |t,u|) allows using Eikonal approximation for FSI.
- Combined with x_B>1 ensures FSI largely confined to between the nucleons of the pair.
- => Large cancellation in ratios.

B. Schmookler et al. (CLAS Collaboration), In-Preparation (2017)

A. Tang et al., PRL (2003);

E. Piasetzky et al., PRL (2006);

R. Shneor et al., PRL (2007)

A. Tang et al., PRL (2003);

E. Piasetzky et al., PRL (2006);

R. Shneor et al., PRL (2007)

Tensor Force Dominance

C.M. Motion and Pairing Mechanisms

"... high relative momentum and <u>low c.m. momentum</u> compared to the Fermi momentum (k_F)"

E. Cohen et al. (CLAS Collaboration), In-Preparation (2017)

NN interaction at Short Distances

(CLAS Collaboration), In-Preparation (2017)

Short-Range Clustering

I. Korover et al. (Hall-A Collaboration), In-Preparation (2017)

Nuclear Asymmetry Dependence

Nuclear Asymmetry Dependence

=> Same number of high-P protons and neutrons!

M. Duer et al. (CLAS Collaboration), In-Preparation (2017)

Nuclear Asymmetry Dependence

=> Protons more correlated in neutrons rich nuclei!

M. Duer et al. (CLAS Collaboration), In-Preparation (2017)

New Era in SRC Research!

Consistent set of (e,e'), (e,e'p), (e,e'pN) and (p,2pn) measurements allow quantifying SRCs with unprecedented accuracy!

- 1. SRC Exist in Nuclei (!) and account for:
 - ~ 20% of the nucleons in nuclei.
 - ~100% of the high-p ($k > k_F$) nucleons in nuclei.
- 2. Have large relative momentum and low c.m. momentum.
- 3. Predominantly due to np-SRC.
- 4. Universal for A = 4 208 nuclei.
- 5. np-SRC create a larger fraction of high-momentum protons in neutron rich nuclei!
- 6. <u>Tensor force</u> dominance at short distance.

Theory Connection: Momentum Densities

Can we formulate a universal description of SRC (both coordinate and momentum space) without relying on many-body calculations? (YES)

Can we use it to confront theory and experiments? (YES)

Universal Nuclear Structure?

1. Use a factorized ansatz for the short-distance (high-momentum) part of the many-body wave function:

- Universal function of the NN interaction.
- Taken as the zero energy solution to the 2 body problem
- Nucleus (/ system) specific function
- Depends on all nucleons except the SRC pair (primarily mean-field)
- 2. Test by comparing to many-body calculations *and* data from hard knockout measurements

Weiss, Cruz-Torres, Barnea, Piasetzky and Hen, arXiv 1612.00923 (2017)

Weiss, Cruz-Torres, Barnea, Piasetzky and Hen, arXiv 1612.00923 (2017)

Weiss, Cruz-Torres, Barnea, Piasetzky and Hen, arXiv 1612.00923 (2017)

Universal Nuclear Structure!

$$n_p(k) = \sum_{\alpha} \left| \widetilde{\varphi}_{pp}^{\alpha}(k) \right|^2 2C_{pp}^{\alpha} + \sum_{\alpha} \left| \widetilde{\varphi}_{pn}^{\alpha}(k) \right|^2 C_{pn}^{\alpha}$$

Nuclear contacts extracted from many-body densities in k- and r-space and from experiment

Α	k-space			r-space				
	$C_{pn}^{s=1}$	$C_{pn}^{s=0}$	$C_{nn}^{s=0}$	$C_{pp}^{s=0}$	$C_{pn}^{s=1}$	$C_{pn}^{s=0}$	$C_{nn}^{s=0}$	$C_{pp}^{s=0}$
4 H o	12.3 ± 0.1	$0.69{\pm}0.03$	$0.65{\pm}0.03$		0.567 ± 0.004		1	
пе	$14.9 \pm 0.7 \text{ (exp)}$	0.8±0.2 (exp)			11.01±0.03	0.007±0.004		
⁶ Li	$10.5{\pm}0.1$	$0.53{\pm}0.05$	$0.49{\pm}0.03$		$10.14{\pm}0.04$	$0.415{\pm}0.004$		
7 Li	10.6 ± 0.1	0.71 ± 0.06	0.78 ± 0.04	0.44 ± 0.03	9.0 ± 2.0	0.6 ± 0.4	0.647 ± 0.004	0.350 ± 0.004
8 Be	$13.2{\pm}0.2$	$0.86{\pm}0.09$	$0.79{\pm}0.07$		$12.0{\pm}0.1$	$0.603{\pm}0.003$		
⁹ Be	$12.3{\pm}0.2$	$0.90{\pm}0.10$	$0.84{\pm}0.07$	$0.69{\pm}0.06$	$10.0{\pm}3.0$	$0.7{\pm}0.7$	$0.65{\pm}0.02$	$0.524{\pm}0.005$
$^{10}\mathbf{B}$	$11.7{\pm}0.2$	$0.89{\pm}0.09$	$0.79{\pm}0.06$		$10.7{\pm}0.2$	$0.57{\pm}0.02$		
¹² C	$16.8{\pm}0.8$	$1.4{\pm}0.2$	$1.3{\pm}0.2$		1/ 0+0 1	0.83+0.01		
	18 ± 2 (exp)	$1.5 \pm 0.5 \text{ (exp)}$			14.0±0.1	0.0010.01		

The Correlations group

• <u>MIT (Or Hen):</u>

Barak Schmookler

Reynier Torres

Efrain Segarra

<u>Afroditi Papadopoulou</u>

Axel Schmidt

George Laskaris

Maria Patsyuk

<u>Adi Ashkenazy</u>

<u>TAU (Eli Piasetzky):</u>

<u>Erez Cohen</u>

Meytal Duer

lgor Korover

• ODU (Larry Weinstein):

<u>Mariana Khachatryan</u>

Florian Hauenstein

Theory Collaborators (lots!)