Neutral pion photoproduction near threshold with chiral perturbation theory

Astrid N. HILLER BLIN

Universidad de Valencia astrid.hiller@uv.es

Tuesday 27th June, 2017

Co-authors: Tim LEDWIG Manuel José VICENTE VACAS Phys. Lett. B 747 (2015) 217; 1412.4083 [hep-ph] Phys.Rev. D 93 (2016) 094018; 1602.08967 [hep-ph]

Contents

1 Motivation: the intricacies of the neutral channel

2 Framework: chiral perturbation theory 101

Motivation

Reaction	Relative dipole moment
$\gamma p \rightarrow \pi^+ n$	1
$\gamma p \rightarrow \pi^0 p$	$-\frac{m_{\pi}}{m_N}$
$\gamma n \to \pi^- p$	$-\left(1+\frac{m_{\pi}}{m_{N}}\right)$
$\gamma n \rightarrow \pi^0 n$	0

NuInt 2017

Motivation

Reaction	Relative dipole moment
$\gamma p \rightarrow \pi^+ n$	1
$\gamma p \rightarrow \pi^0 p$	$-\frac{m_{\pi}}{m_N}$
$\gamma n \rightarrow \pi^- p$	$-\left(1+\frac{m_{\pi}}{m_{N}}\right)$
$\gamma n \rightarrow \pi^0 n$	0

- Close to threshold: strong cancellations between amplitude pieces in neutral channel
- Charged channels well described in low-order ChPT. Neutral channels NOT Bernard et al. (1992) NPB
- The inclusion of the ∆(1232) spin-3/2 resonance is essential

Hemmert et al. (1997) PLB

$\gamma \ \boldsymbol{\rho} \rightarrow \boldsymbol{\rho} \ \pi^0 \ \text{data}$

- ► Very precise data from MAMI Hornidge et al., Phys. Rev. Lett. 111 (2013) 062004
- Could be used to test the convergence of ChPT models
- Polarization observables measured:

$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$$
 and $\Sigma = rac{\mathrm{d}\sigma_{\perp} - \mathrm{d}\sigma_{\parallel}}{\mathrm{d}\sigma_{\perp} + \mathrm{d}\sigma_{\parallel}}$

Previous work

Hornidge et al., Phys. Rev. Lett. 111 (2013) 062004

- *O*(*p*⁴) relativistic ChPT
 O(*p*⁴) HBChPT
- Empirical fit

Starts failing at 20 MeV above threshold

Chiral perturbation theory

$$E_{\gamma} \approx \mathcal{O}(m_{\pi}) \Rightarrow \alpha_{s} = \mathcal{O}(1)$$

Perturbative QCD breaks down

⇒ EFT: expansion around other parameters

Chiral perturbation theory

 $E_{\gamma} \approx \mathcal{O}(m_{\pi}) \Rightarrow \alpha_{s} = \mathcal{O}(1)$

Perturbative QCD breaks down

⇒ EFT: expansion around other parameters

Chiral perturbation theory:

- Small masses, momenta (^{m_π}/_{1 GeV}, ^{p_{ext}/_{1 GeV} ≪ 1): combined expansion}
- New degrees of freedom:
 quarks and gluons => mesons and baryons

Chiral orders of the Lagrangian

Lowest-order **pion** Lagrangian $\sim p_{
m ext}^2, \, m_\pi^2$

$$\mathcal{L}^{(2)}_{\pi} = rac{F_0^2}{4} {
m Tr} \left(
abla_{\mu} U
abla^{\mu} U^{\dagger} + \chi_+
ight)$$

-0

Lowest-order **nucleon** Lagrangian $\sim p_{\text{ext}}$

$$\mathcal{L}_{N}^{(1)} = \bar{N} \left(i \not{D} - m + \frac{g_{A}}{2} \not{\psi} \gamma_{5} \right) N + \cdots$$

Higher-order terms

$$\mathcal{O}(\mathbf{p^3}) \xrightarrow{\overset{\overset{\overset{\overset{\overset{\overset{}}}}{\underset{p}}}{\overset{\overset{\overset{}}}{\underset{p}}{\overset{p}}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{\overset{p}}{\overset{p}}{\overset{p}}{\overset{p}}{\overset{p}{\overset{p}}{$$

Inclusion of the $\Delta(1232)$

Geng et al., Phys. Lett. B 676 (2009) 63
$$\mathcal{L}_{\Delta}^{(1,2,3)} = \bar{\Psi} \Big\{ \frac{\mathrm{i}h_{A}}{2FM_{\Delta}} T^{a} \gamma^{\mu\nu\lambda} (\mathrm{D}_{\lambda}^{ab} \pi^{a}) \\ + \frac{3e}{2m(m+M_{\Delta})} T^{3} \left(\mathrm{i}g_{M} \tilde{F}^{\mu\nu} - g_{E} \gamma_{5} F^{\mu\nu} \right) + \mathrm{H.c.} \Big\} \partial_{\mu} \Delta_{\nu} + \cdots$$

All together: $\mathcal{O}(p^3)$...

All together: $\mathcal{O}(p^3)$ and $\Delta(1232)$

First message

What could not be achieved without the $\Delta(1232)$ is now possible, without the many new fitting constants of $\mathcal{O}(p^4)$

Fit of the low-energy constants

$$g_0$$
 \tilde{c}_{67} $\tilde{d}_{89} \cdot m_N^2$ $\tilde{d}_{168} \cdot m_N^2$ h_A g_M g_E χ^2 /d.o.f.**1.052.29**1.17-10.4**2.852.90**3.530.96

► g₀, c̃₆₇ = c₆ + c₇ converge to the literature values Ledwig et al. (2014) PRD

- ▶ g_M, h_A prefer low values, but literature value gives good fit
- $\tilde{d}_{89} = d_8 + d_9$, g_E are of natural size
- ► d₁₈ is sensitive to higher-order input. We fit the combination d̃₁₆₈ = 2d₁₆ - d₁₈

Comparing theoretical curves with data

All data points for $d\sigma/d\Omega$ and Σ

\sim 800 data points

Nulnt 2017

Summary

- High-quality description of $\gamma p \rightarrow p \pi^0$ threshold data
- Cross sections and photon asymmetries match experimental data at *E_γ* > 170 MeV for the first time
- $\mathcal{O}(p^3)$ with $\Delta(1232)$ better than $\mathcal{O}(p^4)$ without
- Strong constraints on previously unknown LECs

Outlook

Pion photoproduction

Cusp effect, charge production, photon virtuality, ...

Weak pion production

Work in progress (ANHB, Vicente Vacas, Yao)

NuInt 2017

Additional material

Matching a diagram to a specific order

$$O = 4L + \sum kV_k - 2N_{\pi} - N_N - N_{\Delta} \cdot \frac{1}{2}$$

- Propagators: pion $\sim m_{\pi}^{-2}$, nucleon $\sim p_{ext}^{-1}$
- Δ (1232): new scale $\delta = M_{\Delta} m_N \approx$ 0.3 GeV $> m_{\pi}$

•
$$\left(\frac{\delta}{m_N}\right)^2 \approx \left(\frac{m_\pi}{m_N}\right) \Longrightarrow$$
 far from resonance mass: $\sim m_\pi^{-1/2}$

Pascalutsa and Phillips, Phys. Rev. C 67 (2003) 055202

Renormalization

 Loop diagrams: divergences and power counting breaking terms

$$rac{1}{\epsilon} = rac{1}{4 - \dim}$$
 and e.g. terms $\propto p^2$ at $\mathcal{O}(p^3)$

- Fully analytical => match with Lagrangian terms
- Low-energy constants of these terms a priori unknwon
- EOMS-renormalization prescription:

Gegelia and Japaridze, Phys. Rev. D 60 (1999) 114038

- \overline{MS} absorbs $L = \frac{2}{\epsilon} + \log(4\pi) \gamma_E$ into LECs
- Also subtracts PCBT by redefinition of LECs
- Usually converges faster than other counting schemes (relativistic or not)

Multipoles — the real part

E_0^+ — the imaginary part

