Neutrino flux prediction for DUNE

Amit Bashyal (Oregon State University) On behalf of Deep Underground Neutrino Experiment (DUNE)

Collaboration

Office of Science

Deep Underground Neutrino Experiment (DUNE)

- DUNE is a future long baseline neutrino experiment
- Neutrino oscillation studies to test CP violations in lepton sector and mass ordering
- Near Detector will be at 574 m from the start of first focusing horn
- Far Detector at 1300 km in Sanford, South Dakota

DUNE Beam Simulation

- LBNF beam line (g4lbnf) written with GEANT4 package
- Detailed simulation of particle production, transportation and decay leading to the neutrino flux production
- Produced neutrinos are projected at the Far and Near Detector locations for physics studies
 - Reliable neutrino flux prediction depends on:
 - Understanding the flux at near and far detector and their correlations
 - Understanding the systematics in the neutrino flux from focusing and hadron production uncertainties

DUNE Beamline (Nominal)

Simulation starts from proton beam hitting the target to neutrino production

- Proton Beam hits the target
- Charged pions and kaons are produced which in turn are focused by magnetic horns
- 200 meters long decay pipe to let focused pions and kaons decay to produce neutrinos

DUNE Beamline (Nominal & Optimized)

Near to Far Flux Extrapolation for DUNE

$$E_{\nu} = \frac{0.43 E_{\pi}}{1 + \gamma^2 \theta^2} \qquad \Theta \rightarrow \text{decay angle}$$

- Decay angle as seen by near and far detector are different
- Strong dependence for high energy pions
- For same neutrino:
 - At near detector, it will have lower energy than that in far detector

- Near detector being near to beamline, sees it as a line source of neutrinos
- Far detector sees it as a point source
- Besides the R^2 effect, this effect also needs to be considered for an accurate neutrino flux prediction

Near to Far Flux Extrapolation for DUNE

Mapping of neutrino energies from Near to Far Detector

Near Far Correlation with the Matrix

Near to Far Flux Extrapolation for DUNE

Flux Uncertainties in DUNE Neutrino Beam

- Accurate prediction of neutrino flux also relies on understanding the systematics in the flux
 - Uncertainties in 2 broad categories:
 - Focusing
 - Uncertainties in beamline parameters → Position of horns, current in horns, target density
 - Uncertainty in number of protons on Target
 - Hadron Production
 - Due to uncertainties in Geant4 models of pions and kaons produced in the target and other beam line materials

Neutrino Flux Uncertainties

Accurate neutrino flux prediction relies on detailed modeling and understanding of processes starting from primary proton on carbon interaction leading to neutrino production

- Significant disagreement with real data
 - Constrain the hadron production models by external data
- Focusing uncertainties from the fact that simulation has an idealized beamline geometry and doesn't account for geometrical mismodeling

Package to Predict the Flux (PPFX)*

- An experiment independent neutrino flux determination package for the NuMI beam
- Correction for hadron production uncertainties using existing thin target data sets
- Developed by Leo Aliaga for the MINERvA collaboration

Neutrino Flux Uncertainties from Hadron Production

Full ancestry of a neutrino event (from primary proton hitting target to neutrino production)

Apply uncertainties based on best estimation from current physics models if an interaction is not covered directly or indirectly

Hadron Production Data Sets

- Thin target data sets from NA49
- $x_F \rightarrow$ (-0.1,0.5) and $p_T \rightarrow$ (0,2 GeV/c)
 - Include *Barton* data to extend the coverage
 - $x_F \rightarrow (0.3, 0.88)$ and p_T \rightarrow (0.3,0.5 GeV/c)

NA49 statistical error for pC $\rightarrow \pi^+X$

14

12

10

0.5

Error (%)

1.4

1.2

0.4

0.2

0.1

0.2

0.3

 π

0.4

x_F (GeV/c)

0.5

0.6

0.7

p_T (GeV/c)

Correction for $pC \to \pi^{\scriptscriptstyle +}\, X$

1.8

1.6

1.4

0.8

0.6

0.4

0.2

^{1.2} weight

Applying these data sets means: Looking back at neutrino ancestry • For an interaction: ٠ **Primary Proton** Covered directly ٠ **Interaction 2** Covered indirectly ٠ Interaction 1 Or not at all ٠ * NA49 Collaboration, Eur. Phys. J. C49, 897 (2007). * NA49 Collaboration, Eur. Phys. J. C73, 2364 (2013). * D. S. Barton et al., Phys. Rev. D 27, 2580 (1983).

1.5

0.5

0

0.1

0.2

0.3

XF

0.4

p_T (GeV/c)

How Uncertainties are Categorized

Total HP 1 others 2 $pC - > \pi X = 3$ ••••• pC-->KX 4 $nC - > \pi X_{5}$ pC-->nucleonX 6 meson inc. 7 nucleon-A 8 other abs. 9 Target Absorption 10

- **Total Hadron Production Interactions** 1.
- 2. Interactions (excluding 8. interactions) not covered by any of the below categories.
- **Pion production in proton Carbon Interaction** 3.
- Kaon production in proton Carbon Interaction 4.
- 5. **Pion production in neutron Carbon Interaction**
- 6. **Nucleon production in proton Carbon Interaction**
- **Meson incident Interactions** 7.

9.

- Nucleon Incident interactions not covered by any data 8.
- 2 contains the interactions 3,4,5,6,7,9 and 10 Absorption outside the target category interactions that are not covered by thin target data. **10.** Absorption inside the target

Neutrino Ancestry and Hadronic Interaction in DUNE Flux

(not a stacked plot)

Interactions Per Near Detector Neutrino

Fractional Uncertainties

Spectrometer

- Uncertainties will be further lowered by current and future NA61 thin target measurements (and potentially thick targets too)
- Another possible way to lower DUNE flux uncertainties is the "Flux Spectrometer"

by horns and before they have decayed

• One possible configuration

- A replica of the LBNF beam (using spare horns/target) would be placed in a low intensity proton beamline at Fermilab
- In early stages of development -- currently being developed into a full proposal

Summary

- Study of 2 different methods to extrapolate the neutrino flux at Far Detector
- Implementation of uncertainties due to hadronic interactions in the DUNE flux
 - Current estimation shows an uncertainty in the flux of 8% for both reference and optimized design beam in focusing peak
 - Future plan is to implement NA61/SHINE data sets to extend the coverage of interactions
 - Further constraining of uncertainties is achievable by flux spectrometer by measuring the hadron flux in real time

BACK UP SLIDES

Neutrino Flux: Nominal & Optimized

Nominal

Optimized/Engineered

How is an interaction Handled by PPFX

I. Direct Data Coverage

UNDERSTANDING PPFX: Covered by Data

• When an interaction happens, a correction value is determined for each interaction:

•
$$c_i = \frac{N_i^{Data}}{N_i^{MC}}$$
 for any *i*th interaction. [1]

- c_i is the central value correction for the interaction that falls in the ith bin of the Hadron Production Data Set.
- Each bin has an associated uncertainty σ_i and a covariance with other bins j, V_{ij} .

Covered By Data

- When a particle traverses through the volume, correction is: • $c(r) = e^{-\frac{N_A \rho(\sigma_{Data} - \sigma_{MC})}{A}}$ [1]
- When an interaction happens inside a volume:

•
$$c(r) = \frac{\sigma_{Data}}{\sigma_{MC}} e^{-\frac{N_A \rho(\sigma_{Data} - \sigma_{MC})}{A}}$$
 [1]

- Here:
- C(r) is the central value correction
- N_A is the number of atoms with atomic number A seen by the particle when it traverses the volume

When a Particle is Produced:

• When a particle is produced the correction is given by:

•
$$c(x_F, p_T, E) = \frac{f_{Data}(x_F, p_T, 158 \, GeV)}{f_{MC}(x_F, p_T, E)} \times Scale(x_F, p_T, E)$$
 [1]

- Scaling done for 12,20,31,40,60,100,110,120 GeV [1]
- Linear interpolation for the intermediate energies
- $\Delta x_F = 0.005$ [1]
- $\Delta p_T = 0.025 \, GeV/c$ [1]

Uncertainties for Each bin

- Since we use NA49 and Barton Data sets, the closest of the uncertainties from either data set is applied where the data sets overlap.
- Systematic uncertainties are 100% correlated between all bins
- Total systematic uncertainties are added by quadrature

How is an interaction Handled by PPFX

II. Extension of Data Coverage

Extension of Data Coverage

- Interaction outside the target in IC and Decay Pipe Wall
 - Parameterization of invariant cross section

•
$$\frac{f(A_1, x_F, p_T)}{f(A_2, x_F, p_T)} = \frac{A_1^{\propto (x_F, p_T)}}{A_2}$$
 [1

• If A_1 is atomic number of Carbon and A_2 is the atomic number of other materials, \propto is determined by independent fit of skubic data. ^{1,2}

Extension of Data Coverage

- Cross section of proton on carbon producing pions is extended to neutron on carbon producing pions using iso scalar symmetry
- Charged kaon production is extended to neutral kaon production by quark parton model.

How is an interaction Handled by PPFX

Covered by Data (Directly or by Extension)

Interactions not covered by Data

- Incident Mesons
- Particle produced in or out of target by re interacting proton
- Particle production in target by primary proton but outside the x_F range of Data (> .5 for pions and >.2 for kaons)
- For more info:
 - M. Jerkins, **MINERvA-docdb 7633-v1**, Using Monte Carlo Models to Determine A Priori Flux Uncertainties

Interaction Not Covered by Data: Uncertainties

• Uncertainty for these interactions is assigned 40% and they are un correlated.

Error Propagation by Multi Universe Method [1][3]

- When uncertainties are correlated:
 - N universes
 - Parameters and matrix of Parameters
 - Covariance matrix of parameters
 - Decomposition of Covariannce matrix by Chloskey method into upper and lower triangular matrix
 - Use lower triangular matrix to create the vector of deviates
 - Use the deviates to create N flux histograms for N universe
 - Use multi-variate Gaussian to get the final systematic uncertainty

Thin Target Coverage

pc→pion X

рС-->π Х

38

10

pc→kaon X

pC-->KX

pC-->KX

$nc \rightarrow pion X$

pc→nucleon X

pC-->nucleonX

pC-->nucleonX

Meson Incident

meson inc.

meson inc.

nucleon-A

nucleon-A

nucleon-A

Comparison Plots

Total Uncertainty

Target Absorption

pc→pi X

nucleon-A

Target Meson Incident

Total Absorption

Others

REFERENCES AND FURTHER READING

- [1] Neutrino Flux Prediction for the NuMI BeamLine, Leonidas Aliaga Soplin, arXiv.org
- [2] T. Golan, **MINERvA –doc-11150-v1** (For detailed skubic data fitting)
- [3]. M. Kordosky, **MINERvA-doc-7433-v1** (For detailed multi universe method for error propagation)