Systematics in Neutrino OscillationExperiments

Patrick Huber

Center for Neutrino Physics at Virginia Tech

NuInt 17, 11th International Workshop onNeutrino-Nucleus Scattering in the few-GeV Region25–30 June, 2017, Toronto, Ontario, Canada

How much precision?

For baselines below1500 km, the genuine CP asymmetryis at most $\pm 25\%$

For 75% of the parameter space in δ , the genuine CP as asymmetry is small as $\pm 5\%$

That is, a 3σ evidence for CP violation in 75% of parameter space requires ^a $\sim 1.5\%$ measurement of the $P-\bar{P}$ difference, and thus a 1% systematic error.

Statistical errors

Clearly, we are on the (slow) road towards 3% measurements of the eventrates

Translating this intoa 3 $\%$ measurements of the oscillation probability is verydifficult

Note, T2HK would reach 1000 ν_e s_e signal events very quickly.

The Idea

 In order to measure CP violation we need toreconstruct one out of these

$$
P(\nu_{\mu} \to \nu_{e}) \text{ or } P(\nu_{e} \to \nu_{\mu})
$$

and one out of these

$$
P(\bar{\nu}_{\mu} \to \bar{\nu}_e) \text{ or } P(\bar{\nu}_e \to \bar{\nu}_{\mu})
$$

and we'd like to do that at the percen^t level accuracy

The Reality

We do not measure probabilities, but event rates!

$$
R^{\alpha}_{\beta}(E_{\text{vis}}) = N \int dE \, \Phi_{\alpha}(E) \, \sigma_{\beta}(E, E_{\text{vis}}) \, \epsilon_{\beta}(E) \, P(\nu_{\alpha} \to \nu_{\beta}, E)
$$

In order the reconstruct $P,$ we have to know

- N overall normalization (fiducial mass)
- Φ_{α} flux of ν_{α}
- σ_{β} x-section for ν_{β}
- ϵ_{β} detection efficiency for ν_{β}

Note: $\sigma_{\beta}\epsilon_{\beta}$ always appears in that combination, hence we can define an effective cross section $\tilde{\sigma}_{\beta} := \sigma_{\beta} \epsilon_{\beta}$

The Problem

nor

Even if we ignore all energy dependencies of efficiencies, x-sections *etc.*, we generally can not expect to know any ϕ or any $\tilde{\sigma}$. Also, we won't know any kind of ratio

$$
\frac{\Phi_{\alpha}}{\Phi_{\bar{\alpha}}} \quad \text{or} \quad \frac{\Phi_{\alpha}}{\Phi_{\beta}}
$$
\n
$$
\frac{\tilde{\sigma}_{\alpha}}{\tilde{\sigma}_{\bar{\alpha}}} \quad \text{or} \quad \frac{\tilde{\sigma}_{\alpha}}{\tilde{\sigma}_{\beta}}
$$

Note: Even if we may be able to know σ_e/σ_μ from theory, we won't know the corresponding ratio ofefficiencies ϵ_e/ϵ_μ

The Solution

 Measure the un-oscillated event rate at ^a near locationand everything is fine, since all uncertainties willcancel, (provided the detectors are identical and havethe same acceptance)

 $R_\alpha^\alpha(\text{far})L^2$ $R_{\alpha}^{\alpha}(\text{near})$ = $\frac{N_{\mathrm{far}}\Phi_\alpha\,\tilde{\sigma}_\alpha\,P(\nu_\alpha\rightarrow\nu_\alpha)}{N^{\,\prime}\,}$ $N_\mathrm{near}\Phi_\alpha\,\tilde\sigma_\alpha$ 1 $R_\alpha^\alpha(\text{far})L^2$ $R_{\alpha}^{\alpha}(\text{near})$ = N_{far} $N_{\rm near}$ $P(\nu_{\alpha} \rightarrow \nu_{\alpha})$ And the error on $\frac{N_{\text{far}}}{N_{\text{near}}}$ will cancel in the ν to $\bar{\nu}$ comparison.

But . . .

This all works only for disappearance measurements!

$$
\frac{R_{\beta}^{\alpha}(\text{far})L^{2}}{R_{\beta}^{\alpha}(\text{near})} = \frac{N_{\text{far}}\Phi_{\alpha}\,\tilde{\sigma}_{\beta}\,P(\nu_{\alpha} \to \nu_{\beta})}{N_{\text{near}}\Phi_{\alpha}\,\tilde{\sigma}_{\alpha}\,1}
$$

$$
\frac{R_{\beta}^{\alpha}(\text{far})L^{2}}{R_{\beta}^{\alpha}(\text{near})} = \frac{N_{\text{far}}\,\tilde{\sigma}_{\beta}\,P(\nu_{\alpha} \to \nu_{\beta})}{N_{\text{near}}\,\tilde{\sigma}_{\alpha}\,1}
$$

Since $\tilde{\sigma}$ will be different for ν and $\bar{\nu}$, this is a serious problem. And we can not measure $\tilde{\sigma}_{\beta}$ in a beam of $\nu_{\alpha}.$

 \mathcal{L}_{β} (\mathfrak{n} eal)

 $\nu_{\mathbf{e}}/\nu_{\mu}$ total x-sections

Appearance experiments using ^a (nearly) flavorpure beam can not rely on ^a near detector to predict the signal at the farsite!

Large θ_{13} most difficult region.

PH, Mezzetto, Schwetz, 2007Differences between ν_e and ν_μ are significant below 1 GeV, see K. McFarland's talk

Neutrino cross sections

Our detectors are made of nuclei and compared to ^afree nucleon, the following differences arise

- Initial state momentum distribution
- Nuclear excitations
- Reaction products have to leave the nucleus
- Higher order interactions appear

As a function of Q^2 these effects are flavor blind, but we do NOT measure Q^2 .

 These effects are NOT the same for neutrinos andantineutrinos.

Quasi-elastic scattering

QE events allow for ^a simple neutrino energy reconstruction based on the lepton momentum. Nuclear effects will make some non-QE events appearto be like QE events \Rightarrow the neutrino energy will not be correctly reconstructed. correctly reconstructed.

Impact on oscillation

$\nu_\mu\rightarrow\nu_\mu$ in a T2K-like setup with near detector.

Coloma *et al.* ²⁰¹³

 If the energy scale is permitted to shift, tension andbias are reduced, but effects very hard to spot from χ 2

Missing energy

In elastic scattering ^a certain number ofneutrons is made

Neutrons will be largely invisible even in ^a liquid argon TPC \Rightarrow missing energy

Ankowski *et al.*, 2015We can correct for the missing energy IF we know the mean neutron number and energy made in theevent. . .

Known unknowns

All studies somehow use ^a table like this

Two great philosophers

"[...] that is to say we know there are some things we do not know. But there are also unknown unknowns $\mathcal{L} = \{ \mathcal{L} \in \mathcal{L} \mid \mathcal{L} \in \mathcal{L} \}$ there are things we do not know we don't know."

Donald Rumsfeld

"In theory there is no difference between theory andpractice. In practice there is."Yogi Berra

Towards precise cross sections

This will require better neutrino sources, since ^a crosssection measurement is about as precise as the accuracy at which the beam flux is known.

- Percent beam flux normalization
- Very high statistics needed to map phase space
- Neutrinos and antineutrinos
- ν_μ and ν_e

A (the only?) source which can deliver all that is ^amuon storage ring, aka nuSTORM.

see also A. Longhin's talk

nuSTORM in numbers

Beam flux known to better than 1%

nuSTORM collab. 2013

 Approximately 3-5 years running for each polaritywith ^a 100 ^t near detector at 50 ^m from the storage ring

Systematics for Superbeams

- Already today cross section uncertainties are theleading systematic.
- DUNE and T2HK will reach statistical errorsbetween 1–3% in ν_e -appearance.
- Neutrino energy construction at the few-% level is needed for DUNE.

This calls for ^a coordinated effort to ge^t the crosssection errors into the same ballpark.

Therefore, we need an experimental program beyond $MINER\mathcal{V}A$ to measure cross sections.

Hence, we need better (anti-)neutrino sources for bothflavors.