Modeling g**-Rays from the Thermal Neutron Capture on Gadolinium based on J-PARC ANNRI Data**

- Sebastian Lorenz^{1,2} -

on behalf of

K.Hagiwara¹, P.K.Das¹, R.Dhir¹, T.Kayano¹, Y.Kosiho¹, T.Mori¹, I.Ou¹, M.Sakuda¹, T.Tanaka¹, Y. Yamada¹, T. Yano³, H. Harada⁴, N. Iwamoto⁴, A. Kimura⁴, S. Nakamura⁴, W. Focillon⁵, M. Gonin⁵

> ¹ *Okayama Univ.* ² *Mainz Univ.* ³ *Kobe Univ.* ⁴ *Japan Atomic Energy Agency 5 École polytechnique*

11th International Workshop on Neutrino-Nucleus Scattering in the Few-GeV Region – NuInt 2017

The Fields Institute, University of Toronto, June 30th 2017

- ➢ Motivation
- ➢ GARNET with ANNRI at J-PARC
- ➢ Data Analysis and Model Building
- ➢ Summary

Motivation Delayed Coincidence Technique for Inverse Beta Decay

 \triangleright A common technique for low-energy (few MeV) $\overline{\nu}_e$ detection: Exploit delayed coincidence of signals from inverse beta decay reaction products

- 1) Prompt signal (some ns): positron motion + annihilation
- 2) Delayed signal (some 10s to 100s of us): y-ray(s) from **neutron capture**
- ➢ Visibility of delayed ("marker") signal depends on neutron catcher nucleus
- ➢ With respect to background rejection, you want a delayed signal that …
	- \ldots follows shortly after the prompt signal \rightarrow cross-section; concentration
	- ... has a strong signature (in face of a Cherenkov threshold) \rightarrow Q-value

- Gadolinium (157 Gd) has largest thermal neutron capture cross-section among all stable nuclei due to resonance states in thermal energy region
- \blacktriangleright High Q-value of >7.9 MeV
- \vee Incorporation of gadolinium into common target materials demonstrated
- **x** Excitation energy often released in multiple γ -rays (cascade)
	- \rightarrow Some y-rays can escape detection / be below the Cherenkov threshold
- Good modeling of the y-ray spectrum from thermal $Gd(n,y)$ is important to make reliable neutron tagging efficiency predictions with MC studies!

Gadolinium in Neutrino Experiments Liquid / Solid Scintillator Detectors

➢ Gadolinium loading is used in unsegmented ton-scale liquid scintillator $\overline{\mathsf{v}}_{\mathsf{e}}$ detectors

Daya Bay, Double Chooz, RENO ($\rightarrow \theta_{13}$)

- \triangleright Gd mass fraction: 0.1% (\sim 1g per liter)
- ➢ Segmented plastic scintillator detectors can put film with Gd-coating between bars *PANDA* (\rightarrow reactor monitoring)

[PANDA module schematic; NIM A 757 (2014) 33-39]

- ➢ Calorimetric energy measurement **→ Q-value of n-capture reaction observable if all** g**-rays are fully contained**
- \triangleright Dedicated y-catcher volume around target or fiducial volume cut!

[[]Double Chooz schematic; Phys.Rev. D86 (2012) 052008]

- \geq Neutron tagging with 2.2 MeV y-rays from ${}^{1}H(n,y)$ has low efficiency due to Cherenkov threshold $\rightarrow \gamma$'s below ~1MeV produce no Cherenkov light!
- ➢ Gd-loading of water would advance this neutrino detector technology \rightarrow decrease energy threshold for $v_e \rightarrow e.g.,$ improve SNR-v flux search
- ➢ Sustainable Gd-loading of water was successfully demonstrated by *EGADS*
- > **Super-K** will load 100t of Gd₂(SO₄)₃ (0.2% concentration) in 2018! \rightarrow 90% n-capture detection efficiency
- ➢ Due to Cherenkov threshold: mean visible energy is below the Q-value of $Gd(n,y)$
- \geq A proper modeling of the energy distribution in the $Gd(n,y)$ cascade is important for MC-based efficiency studies!

- ➢ Gd will also be used for neutron multiplicity measurements in...
	- the *E61 JPARC Intermediate Water Cherenkov Detector* [Talk by *Blair Jamieson* on Thursday]

● **ANNIE**

[Talk by *Marcus O'Flaherty* on Thursday]

- ➢ Project: *GAmma-Rays produced in gadolinium Neutron capture Experiment and* g*-ray Transition model*
- \triangleright Measured y-ray spectra from Gd(n,y) reaction with thermal neutrons
- \geq Two data-takings with the *Accurate Neutron-Nucleus Reaction Measurement Instrument* (**ANNRI**) of the *Materials and Life Science Experimental Facility* (MLF) at J-PARC
- ➢ Neutron targets:
	- Natural Gd film (99.99%), 5 mm x 5 mm x 10 , $20 \mu m$
	- Enriched 155Gd (91.65%) / 157 Gd (88.4%) in Gd $_{2}$ O $_{3}$ powder
- ➢ Development of a Gd g*-ray* cascade model for GEANT4 with GARNET detector simulation

 \triangleright First measurement of y-ray spectrum from Gd(n,y) in [0.1, Q-val] MeV with large statistics, small background (<1%) and excellent energy resolution

GARNET with ANNRI at J-PARC ANNRI at MLF

- ➢ ANNRI is located at beamline 04 of MLF
- ➢ Neutron source:
	- 3 GeV protons on Hg target
	- about 300 kW proton power
	- intensity at Gd target: 1.3×10^{11} n/(sm²) in $E_n = [1.5, 25]$ meV range

- ➢ Used instrumentation:
	- 2 Ge clusters $(2 \times 7$ hexagonal crystals)
	- 2 BGO veto shields
- ➢ Energy calibration / efficiency determination:
	- Sources: ²²Na, ⁶⁰Co, ¹³⁷Cs, ¹⁵²Eu,
	- Targets: NaCl(n,y); empty target holder for background measurement
- ➢ Energy resolution of one Ge crystal: \sim 9.2keV (FWHM) @ 1.3MeV
- ➢ Full-energy peak efficiency: 2.2% @ 1.3MeV (all 14 Ge crystals combined)
- ➢ Solid angle coverage:
	- 2 Ge clusters: 22%
	- 2 BGO vetoes: 55%

Data Analysis and Model Building Event selection / Multiplicity Assignment / y -Ray Energy

➢ Event selection:

Only events in the thermal neutron energy range 4-100 meV

- \triangleright y-ray multiplicity M:
	- Number of disconnected crystal sub-clusters over both Ge clusters
	- $M \le$ true γ -ray multiplicity due to
		- ➔ limited solid angle coverage
		- **→ Compton scattering over multiple** crystals
- ➢ Hit count H: number of hit crystals
- \triangleright Reconstructed y-ray energy: Amount of deposited energy in

 \ge Large event samples; more than 3 \times 10⁹ events per Gd target

- ➢ Sub-samples for different γ -ray multiplicities
- ➢ For MC model building: describe spectrum by two parts
	- **Discrete peaks**
	- **Continuum**
	- $=$ same approach GLG4sim 1 uses for GEANT4 simulations

In the following: only 157Gd(n,g**)**

¹ *Generic Liquid-scintillator Anti-Neutrino Detector Geant4 simulation* <http://neutrino.phys.ksu.edu/~GLG4sim/> - last updated 2005

Data Analysis and Model Building Nuclear Level Structure of Gadolinium

- Gadolinum ($Z=64$; A \sim 152–160 for nat. Gd) has a complex nuclear level structure
- ➢ *Nuclear Level Density* (NLD) r(E) increases with rising excitation energy Discrete nuclear levels $\longrightarrow a$ quasi-continuum of nuclear levels
- \ge Example ¹⁵⁸Gd: NNDC¹ lists about 220 discrete levels up to \sim 4 MeV, but there are many more!

 \triangleright We use tabulated values of $\rho(E)$ from the Hartree-Fock-Bugoliubov (HFB) model²

¹ *National Nuclear Data Center* [\(https://www.nndc.bnl.gov/\)](https://www.nndc.bnl.gov/)

2 E.g., see Capote et al.: Nuclear Data Sheets 110 (2009) 3107–3214

- ➢ Discrete peaks are fixed, prominent transitions between nuclear levels
- \triangleright We identified 15 discrete peaks in our data (prompt y-ray energies from 7937 to 5167 keV)
- They are directly included into our model (GLG4sim uses 6 peaks)
- Their strengths are tuned to match our data
- For $E > 110$ keV, they contribute $(6.8 \pm 0.1)\%$ to our data

 \geq Our relative intensities of prompt γ -rays agree with *CapGam*1 values within about ±30%

¹*Thermal Neutron Capture γ's* from NNDC (http://www.nndc.bnl.gov/capgam/)

Data Analysis and Model Building $157Gd(n,y)$ – Continuum Spectrum

- ➢ Continuum spectrum stems from (numerous) random transitions especially within the high NLD domain;
- \triangleright It contributes $(93.2 \pm 0.1)\%$ to our data (E>110keV)

Data Analysis and Model Building $157Gd(n,y)$ – Continuum Spectrum – PSF

$$
P(E_a, E_b) = \frac{dP}{dE}(E_a, E_b) \Delta E_b = \frac{T(E_\gamma)\rho(E_b)\Delta E_b}{\int_0^{E_a} T(E_\gamma)\rho(E_b) dE_b}
$$
, $T(E_\gamma) = 2\pi E_\gamma^3 f(E_\gamma, T)$
Transmission coeff. for E1 transition

 \triangleright For the PSF of the E1 transitions we use the

Enhanced Generalized Lorentzian (EGLO) model¹ for a deformed nucleus

$$
f(E_{\gamma},T) = \sum_{i=1}^{2} \left[\frac{E_{\gamma} \Gamma_i(E_{\gamma},T)}{\left(E_{\gamma}^2 - E_i^2\right)^2 + E_{\gamma}^2 \Gamma_i^2(E_{\gamma},T)} + 0.7 \frac{\Gamma_i(E_{\gamma} = 0,T)}{E_i^3} \right] \sigma_i \Gamma_i
$$

with

$$
\left|\Gamma_i(E_\gamma, T) = \left[k_0 + \frac{E_\gamma - \varepsilon_0^\gamma}{E_i - \varepsilon_0^\gamma}(1 - k_0)\right] \frac{\Gamma_i}{E_i^2} \left(E_\gamma^2 + 4\pi^2 T^2\right)\right|
$$

and the E1 resonance paramters

[From RIPL-2; see also Phys. Rev. C 47, 312]

 1 E.g., see Capote et al.: Nuclear Data Sheets 110 (2009) 3107-3214

Data Analysis and Model Building $157Gd(n,y)$ – Models vs. Data – Spectrum

- ➢ Compare full model to data (continuum + discrete peaks)
- \triangleright For single- γ -ray events (M1H1): agreement within about ±50% at ΔE = 500 keV
- ➢ Our model shows a better performance than the GLG4sim model
- ➢ Analysis is ongoing!
- ➢ Use different models for NLD / PSF

Data Analysis and Model Building $157Gd(n,y)$ – Model vs. Data – Event Class Fractions

- \triangleright We also compare the fractions of the different event classes (y-ray multiplicities) in data and MC
- ➢ For the considered event classes, the agreement between data and MC is well within ±15%

- ➢ Gadolinium is a popular additive in neutrino detectors to enhance the delayed neutron capture signal of an IBD event
- \triangleright Precise knowledge of the y-ray spectrum from Gd(n,y) is important to assess neutron tagging efficiencies with MC simulations
- \triangleright We precisely measured the y-ray spectra from thermal Nat, 155, 157 Gd(n, y) reactions with the ANNRI germanium spectrometer at J-PARC
- \geq Based on the data, we build a model for the spectrum to generate the y-rays in a MC simulation (GEANT4); 15 discrete peaks for $^{157}Gd(n,y)$ included and tuned to data; contiuum part bases on statistical modeling
- \geq Spectrum model and data currently agree within about $\pm 50\%$ (ΔE =500 keV) for single-y-ray events; our model reproduces the different γ -ray multiplicities with below 15% deviation from our data

- ➢ Gadolinium is a popular additive in neutrino detectors to enhance the delayed neutron capture signal of an IBD event
- \triangleright Precise knowledge of the y-ray spectrum from Gd(n,y) is important to assess neutron tagging efficiencies with MC simulations
- \triangleright We precisely measured the y-ray spectra from thermal Nat, 155, 157 Gd(n, y) reactions with the ANNRI germanium spectrometer at J-PARC
- \geq Based on the data, we build a model for the spectrum to generate the y-rays in a MC simulation (GEANT4); 15 discrete peaks for $^{157}Gd(n,y)$ included and tuned to data; contiuum part bases on statistical modeling
- \geq Spectrum model and data currently agree within about $\pm 50\%$ (ΔE =500 keV) for single-y-ray events; our model reproduces the different γ -ray multiplicities with below 15% deviation from our data

Thank you very much for your kind attention!

FURTHER INFORMATION

NuInt 2017, June 30th 2017 Sebastian Lorenz, Okayama University

- ➢ Trigger conditions:
	- 1) At least one Ge crystal has E>0.1MeV
	- 2) The surrounding BGO has $E < 0.1$ MeV
- \rightarrow upper and lower cluster independent!

➢ With known distance (L=21.5 m) between n-source and detector one can calculate the energy E_n of the thermal neutron with mass m_n from its time of flight T for the distance L with the classical formula

 $E_n = m_n (L/T)^2 / 2$

- \geq Resonances of ¹⁵⁵Gd and ¹⁵⁷Gd in detected neutron energy spectrum between 1 and 10 eV
	- ✔ Good agreement with calculated expectations
	- Reasonable isotope abundances in nat. Gd and good energy calibration

 \geq Comparison of full model to data for $^{155}Gd(n,y)$

Further Information Angular Correlations

- \triangleright We see the angular correlation of y-rays from $^{157}Gd(n,y)$
- \geq For the shown y-ray lines it agrees with the theory¹

$$
W(Z) = A\left(1 + \frac{3}{7}Z^2\right)
$$

for dipole-quadrupole transitions.

➢ Future: Study angular correlations with 8 additional co-axial counters.

 1 Physical Review 78, 5 (1950) p. 558-566