Modeling γ-Rays from the Thermal Neutron Capture on Gadolinium based on J-PARC ANNRI Data

- Sebastian Lorenz^{1,2} -

on behalf of

K.Hagiwara¹, P.K.Das¹, R.Dhir¹, T.Kayano¹, Y.Kosiho¹, T.Mori¹, I.Ou¹, M.Sakuda¹, T.Tanaka¹, Y.Yamada¹, T.Yano³, H.Harada⁴, N.Iwamoto⁴, A.Kimura⁴, S.Nakamura⁴, W.Focillon⁵, M.Gonin⁵

¹ Okayama Univ. ² Mainz Univ. ³ Kobe Univ. ⁴ Japan Atomic Energy Agency ⁵ École polytechnique

11th International Workshop on Neutrino-Nucleus Scattering in the Few-GeV Region – NuInt 2017

The Fields Institute, University of Toronto, June 30th 2017

- Motivation
- GARNET with ANNRI at J-PARC
- Data Analysis and Model Building
- Summary

Motivation Delayed Coincidence Technique for Inverse Beta Decay

> A common technique for low-energy (few MeV) \overline{v}_e detection: Exploit delayed coincidence of signals from inverse beta decay reaction products

- 1) Prompt signal (some ns): positron motion + annihilation
- 2) Delayed signal (some 10s to 100s of μ s): γ -ray(s) from neutron capture
- > Visibility of delayed ("marker") signal depends on neutron catcher nucleus
- > With respect to background rejection, you want a delayed signal that ...
 - ... follows shortly after the prompt signal \rightarrow cross-section; concentration
 - ... has a strong signature (in face of a Cherenkov threshold) \rightarrow Q-value

- Gadolinium (¹⁵⁷Gd) has largest thermal neutron capture cross-section among all stable nuclei due to resonance states in thermal energy region
- ✓ High Q-value of >7.9 MeV
- Incorporation of gadolinium into common target materials demonstrated
- **x** Excitation energy often released in multiple γ -rays (cascade)
 - Some γ -rays can escape detection / be below the Cherenkov threshold
- Good modeling of the γ -ray spectrum from thermal Gd(n, γ) is important to make reliable neutron tagging efficiency predictions with MC studies!

Isotope	Thermal neutron capture cross-section [barn]	Q-value [MeV]	Nγ	
¹⁵⁵ Gd	61100	8.5	~3-4	Side note: Uncertainty for radiative thermal
¹⁵⁷ Gd	254000	7.9	~3-4	[E.g., see Nuclear Science and Engineering: 177, 219–232 (2014)]
¹ Η	0.333	2.2	1	
¹² C	0.004	4.9	~1-2	[Neutron News, Vol. 3, No. 3, 1992, pp. 29-37;
¹⁶ O	0.189	4.1	~2-3	Nuclear Data Sheets 113, 2537 (2012); TUNL Nuclear Data Evaluation Homepage: www.tunl.duke.edu/nucldata/

Nulnt 2017, June 30th 2017

Gadolinium in Neutrino Experiments Liquid / Solid Scintillator Detectors

> Gadolinium loading is used in unsegmented ton-scale liquid scintillator $\overline{\nu_e}$ detectors

Daya Bay, Double Chooz, RENO ($\rightarrow \theta_{13}$)

- Gd mass fraction: 0.1% (~1g per liter)
- Segmented plastic scintillator detectors can put film with Gd-coating between bars
 PANDA (→ reactor monitoring)

[PANDA module schematic; NIM A 757 (2014) 33-39]

- ≻ Calorimetric energy measurement
 → Q-value of n-capture reaction observable if all γ-rays are fully contained
- Dedicated y-catcher volume around target or fiducial volume cut!

[[]Double Chooz schematic; Phys.Rev. D86 (2012) 052008]

- > Neutron tagging with 2.2 MeV γ -rays from ¹H(n, γ) has low efficiency due to Cherenkov threshold $\rightarrow \gamma$'s below ~ 1 MeV produce no Cherenkov light!
- > Gd-loading of water would advance this neutrino detector technology \rightarrow decrease energy threshold for $v_e \rightarrow e.g.$, improve SNR-v flux search
- Sustainable Gd-loading of water was successfully demonstrated by EGADS
- Super-K will load 100t of Gd₂(SO₄)₃ (0.2% concentration) in 2018!
 → 90% n-capture detection efficiency
- Due to Cherenkov threshold: mean visible energy is below the Q-value of Gd(n,γ)
- A proper modeling of the energy distribution in the Gd(n,γ) cascade is important for MC-based efficiency studies!

- Gd will also be used for neutron multiplicity measurements in...
 - the *E61 JPARC Intermediate Water Cherenkov Detector* [Talk by *Blair Jamieson* on Thursday]

• ANNIE

[Talk by Marcus O'Flaherty on Thursday]

- Project: GAmma-Rays produced in gadolinium Neutron capture Experiment and y-ray Transition model
- > Measured γ -ray spectra from Gd(n, γ) reaction with thermal neutrons
- Two data-takings with the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) of the Materials and Life Science Experimental Facility (MLF) at J-PARC
- Neutron targets:
 - Natural Gd film (99.99%), 5 mm x 5 mm x 10, 20 μm
 - Enriched ¹⁵⁵Gd (91.65%) / ¹⁵⁷Gd (88.4%) in Gd₂O₃ powder
- Development of a Gd γ-ray cascade model for GEANT4 with GARNET detector simulation

	Abundance	Thermal capture
Isotope	ratio [%]	cross section [barn]
152 Gd	0.200	740
154 Gd	2.18	85.8
¹⁵⁵ Gd	14.80	61100
¹⁵⁶ Gd	20.47	1.81
¹⁵⁷ Gd	15.65	254000
¹⁵⁸ Gd	24.84	2.22
160 Gd	21.86	1.42
		at 25 meV neutron energy

Composition of natural gadolinium

First measurement of γ -ray spectrum from Gd(n, γ) in [0.1, Q-val] MeV with large statistics, small background (<1%) and excellent energy resolution

GARNET with ANNRI at J-PARC ANNRI at MLF

- ANNRI is located at beamline 04 of MLF
- Neutron source:
 - 3GeV protons on Hg target
 - about 300 kW proton power
 - intensity at Gd target: $1.3 \times 10^{11} \text{ n/(sm^2)}$ in E_n=[1.5,25] meV range

- Used instrumentation:
 - 2 Ge clusters (2x7 hexagonal crystals)
 - 2 BGO veto shields
- Energy calibration / efficiency determination:
 - Sources: ²²Na, ⁶⁰Co, ¹³⁷Cs, ¹⁵²Eu,
 - Targets: NaCl(n,γ); empty target holder for background measurement
- Energy resolution of one Ge crystal: ~9.2 keV (FWHM) @ 1.3 MeV
- Full-energy peak efficiency:
 2.2% @ 1.3 MeV
 (all 14 Ge crystals combined)
- Solid angle coverage:
 - 2 Ge clusters: 22%
 - 2 BGO vetoes: 55%

Data Analysis and Model Building Event selection / Multiplicity Assignment / γ-Ray Energy

- Event selection: Only events in the thermal neutron energy range 4-100 meV
- > γ -ray multiplicity M:
 - Number of disconnected crystal sub-clusters over both Ge clusters
 - $M \leq true \gamma$ -ray multiplicity due to
 - → limited solid angle coverage
 - Compton scattering over multiple crystals
- > Hit count H: number of hit crystals
- Reconstructed γ-ray energy: Amount of deposited energy in sub-cluster

> Large event samples; more than 3×10^9 events per Gd target

Target	Time	Number of Events	Source	Time	Number of Events
Nat. Gd	116 hours	3.5×10^{9}	²² Na	5 minutes	1.5×10^{7}
$^{155}Gd_{2}O_{3}$	38 hours	3.1×10^{9}	⁶⁰ Co	18 hours	8.8×10^{7}
$^{157}\text{Gd}_2\text{O}_3$	55 hours	4.6×10^{9}	¹³⁷ Cs	30 minutes	2.1×10^{6}
NaCl	4 hours	1.3×10^{8}	¹⁵² Eu	7 hours	2.3×10^{7}
Empty	6 hours	1.3×10^{7}			

- Sub-samples for different γ-ray multiplicities
- For MC model building: describe spectrum by two parts
 - Discrete peaks
 - Continuum
 - = same approach GLG4sim¹ uses for GEANT4 simulations

In the following: only 157 Gd(n, γ)

¹ Generic Liquid-scintillator Anti-Neutrino Detector Geant4 simulation http://neutrino.phys.ksu.edu/~GLG4sim/ - last updated 2005

Data Analysis and Model Building Nuclear Level Structure of Gadolinium

- > Gadolinum (Z=64; A \sim 152–160 for nat. Gd) has a complex nuclear level structure
- Nuclear Level Density (NLD) ρ(E) increases with rising excitation energy Discrete nuclear levels → a quasi-continuum of nuclear levels
- Example ¹⁵⁸Gd: NNDC¹ lists about 220 discrete levels up to ~4 MeV, but there are many more!

We use tabulated values of ρ(E) from the Hartree-Fock-Bugoliubov (HFB) model²

¹*National Nuclear Data Center* (https://www.nndc.bnl.gov/)

² E.g., see Capote et al.: Nuclear Data Sheets 110 (2009) 3107–3214

- Discrete peaks are fixed, prominent transitions between nuclear levels
- We identified 15 discrete peaks in our data (prompt γ-ray energies from 7937 to 5167 keV)
- They are directly included into our model (GLG4sim uses 6 peaks)
- Their strengths are tuned to match our data
- > For E > 110 keV, they contribute $(6.8 \pm 0.1)\%$ to our data

 Our relative intensities of prompt γ-rays agree with CapGam¹ values within about ±30%

¹ Thermal Neutron Capture y's from NNDC (http://www.nndc.bnl.gov/capgam/)

Data Analysis and Model Building ¹⁵⁷Gd(n,γ) – Continuum Spectrum

- Continuum spectrum stems from (numerous) random transitions especially within the high NLD domain;
- It contributes (93.2±0.1)% to our data (E>110 keV)

Data Analysis and Model Building ${}^{157}Gd(n,\gamma)$ – Continuum Spectrum – PSF

$$P(E_a, E_b) = \frac{\mathrm{d}P}{\mathrm{d}E}(E_a, E_b) \Delta E_b = \frac{T(E_{\gamma})\rho(E_b)\Delta E_b}{\int_0^{E_a} T(E_{\gamma})\rho(E_b)\mathrm{d}E_b}, \quad T(E_{\gamma}) = 2\pi E_{\gamma}^3 f(E_{\gamma}, T)$$

Transmission coeff. for E1 transition

For the PSF of the E1 transitions we use the

Enhanced Generalized Lorentzian (EGLO) model¹ for a deformed nucleus

$$f(E_{\gamma},T) = \sum_{i=1}^{2} \left[\frac{E_{\gamma}\Gamma_i(E_{\gamma},T)}{\left(E_{\gamma}^2 - E_i^2\right)^2 + E_{\gamma}^2\Gamma_i^2(E_{\gamma},T)} + 0.7\frac{\Gamma_i(E_{\gamma}=0,T)}{E_i^3} \right] \sigma_i \Gamma_i$$

with

$$\Gamma_i(E_\gamma, T) = \left[k_0 + \frac{E_\gamma - \varepsilon_0^\gamma}{E_i - \varepsilon_0^\gamma} (1 - k_0)\right] \frac{\Gamma_i}{E_i^2} \left(E_\gamma^2 + 4\pi^2 T^2\right)$$

and the E1 resonance paramters

	Energy (E _i) [MeV]	Strength (ơ _i) [mb]	Width (Γ _i) [MeV]
158 C d	11.7	165	2.6
Gu	14.9	249	3.8

[From RIPL-2; see also Phys. Rev. C 47, 312]

¹E.g., see Capote et al.: Nuclear Data Sheets 110 (2009) 3107–3214

Data Analysis and Model Building $^{157}Gd(n,\gamma)$ – Models vs. Data – Spectrum

- Compare full model to data (continuum + discrete peaks)
- > For single- γ -ray events (M1H1): agreement within about ±50% at $\Delta E = 500 \text{ keV}$
- Our model shows a better performance than the GLG4sim model
- > Analysis is ongoing!
- > Use different models for NLD / PSF

Data Analysis and Model Building $^{157}Gd(n,\gamma)$ – Model vs. Data – Event Class Fractions

- We also compare the fractions of the different event classes (γ-ray multiplicities) in data and MC
- For the considered event classes, the agreement between data and MC is well within ±15%

- Gadolinium is a popular additive in neutrino detectors to enhance the delayed neutron capture signal of an IBD event
- Precise knowledge of the γ-ray spectrum from Gd(n,γ) is important to assess neutron tagging efficiencies with MC simulations
- We precisely measured the γ-ray spectra from thermal Nat,155,157Gd(n,γ) reactions with the ANNRI germanium spectrometer at J-PARC
- Based on the data, we build a model for the spectrum to generate the γ-rays in a MC simulation (GEANT4); 15 discrete peaks for ¹⁵⁷Gd(n,γ) included and tuned to data; continum part bases on statistical modeling
- Spectrum model and data currently agree within about ±50% (ΔE=500 keV) for single-γ-ray events; our model reproduces the different γ-ray multiplicities with below 15% deviation from our data

- Gadolinium is a popular additive in neutrino detectors to enhance the delayed neutron capture signal of an IBD event
- Precise knowledge of the γ-ray spectrum from Gd(n,γ) is important to assess neutron tagging efficiencies with MC simulations
- We precisely measured the γ-ray spectra from thermal Nat,155,157Gd(n,γ) reactions with the ANNRI germanium spectrometer at J-PARC
- Based on the data, we build a model for the spectrum to generate the γ-rays in a MC simulation (GEANT4); 15 discrete peaks for ¹⁵⁷Gd(n,γ) included and tuned to data; continum part bases on statistical modeling
- Spectrum model and data currently agree within about ±50% (ΔE=500 keV) for single-γ-ray events; our model reproduces the different γ-ray multiplicities with below 15% deviation from our data

Thank you very much for your kind attention!

FURTHER INFORMATION

Sebastian Lorenz, Okayama University

- Trigger conditions:
 - 1) At least one Ge crystal has E > 0.1 MeV
 - 2) The surrounding BGO has E < 0.1 MeV
- → upper and lower cluster independent!

With known distance (L=21.5 m) between n-source and detector one can calculate the energy E_n of the thermal neutron with mass m_n from its time of flight T for the distance L with the classical formula

 $E_n = m_n (L/T)^2 / 2$

- Resonances of ¹⁵⁵Gd and ¹⁵⁷Gd in detected neutron energy spectrum between 1 and 10 eV
 - Good agreement with calculated expectations
 - Reasonable isotope abundances in nat. Gd and good energy calibration

> Comparison of full model to data for ${}^{155}Gd(n,\gamma)$

Further Information Angular Correlations

- > We see the angular correlation of γ -rays from ¹⁵⁷Gd(n, γ)
- > For the shown γ -ray lines it agrees with the theory¹

$$W(Z) = A\left(1 + \frac{3}{7}Z^2\right)$$

for dipole-quadrupole transitions.

> Future: Study angular correlations with 8 additional co-axial counters.

¹ Physical Review 78, 5 (1950) p. 558-566