

Neutrino Scattering

Theory-Experiment Collaboration

N. Jachowicz on behalf of

Tuesday
evening
NuSTEC
was
working
extremely
hard ...

How are we going to address challenges?

How can we move NuInt physics forward?

In the most efficient way

 With a coherent view that is supported by the whole community

We are soliciting your opinion and input!

II. Introduction and Overview of the Current Challenges	6
A. Introduction: General Challenges	6
B. Challenges: The Determination of Neutrino Oscillation Parameters and	
Neutrino-Nucleus Interaction Physics (Section III)	9
C. Challenges: Generators (Section IV)	10
D. Challenges: Electron-nucleus Scattering (Section V)	10
E. Challenges: Quasielastic Peak Region (Section VI)	10
F. Challenges: The Resonance Region (Section VII)	11
G. Challenges: Shallow and Deep-Inelastic Scattering Region (Section VIII)	12
H. Challenges: Coherent Meson Production (Section IX)	13

II.	Int	roduction an	d Overview of the Current Challenges	6
	A.	Latroductic	: General Challenges	6
	В	Challenges:	The Determination of Neutrino Oscillation Parameters and	
		Neutrino-Nu	eus Interaction Physics (Section III)	9
	().	Challenges:	Generators (Section IV)	10
]).	Challenges:	Electron-nucleus Scattering (Section V)	10
).	Challenges:	Quasielastic Peak Region (Section VI)	10
	1	Challenges:	The Resonance Region (Section VII)	11
	G	Challenges:	Shallow and Deep-Inelastic Scattering Region (Section VIII)	12
	H.	Challenges:	Coherent Meson Production (Section IX)	13

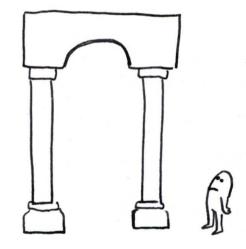
A. Latroductical General Challenges	6
B Challenges: The Determination of Neutrino Oscillation Parameters and	
Neutrino-Nucleus Interaction Physics (Section III)	9
C. Challenges: Generators (Section IV)	10
D. Challenges: Electron-nucleus Scattering (Section V)	10
C. Challenges: Quasielastic Peak Region (Section VI)	10
Challenges: The Resonance Region (Section VII)	11
G Challenges: Shallow and Deep-Inelastic Scattering Region (Section VIII)	12
H. Challenges: Coherent Meson Production (Section IX)	13

II. Introduction and Overview of the Current Challenges	6
A. Introduction: General Challenges	6
B. Challenges: The Determination of Neutring Os ill tion Parameters	and
Neutrino-Nucleus Interaction Physics (Cectic III)	9
C. Challenges: Generators (Section V)	10
D. Challenges: Electron-race u. So than Y (Section Y)	10
E. Challenges: Quasielasti Peal Region (Section VI)	10
F. Challenges: The Resonance Region (Section VII)	11
G. Challenges: Shallow and Deep-Inelastic Scattering Region (Section)	VIII) 12
H. Challenges: C herent Meson Production (Section IX)	13

- In Japan and the U.S. the neutrino community is well under way with an ambitious program of long-baseline neutrino experiments aimed at discovering leptonic CP violation and testing the three flavor paradigm.
 - Already today neutrino-nucleus interaction uncertainties are the limiting systematic for long-baseline experiments. Within roughly a decade, statistical precision at the percent level will be achieved and corresponding improvement in our understanding of neutrino-nucleus interactions is required.
- Theory will play a central role in this endeavor, but at the same time the question arises what type of experimental program is needed to provide the necessary benchmarks and cross
 section
- With the establishment of the CERN neutrino platform how do we bring the growing CERN and CERN-associated neutrino community of experimentalists, theorists and accelerator physicists actively into neutrino interactions study? Ideas of several CERN workshops in circulation.

<u>Particular Challenges: Theorists</u> (non-exhaustive ...)

- Significant improvements of nuclear models by theorists, to replace current Franken-models, are essential and should include:
 - The development of a unified model (no double counting and nothing lost in the "cracks") of nuclear structure giving the initial kinematics and dynamics of nucleons bound in the nucleus.
 - Modeling neutrino—bound-nucleon cross sections not only at the lepton semi-inclusive cross section level, but also in the full phase space for all the exclusive channels that are kinematically allowed.
 - Improving our understanding of the role played by nucleon-nucleon correlations in interactions and implementing this understanding in MC generators, in order to avoid double counting.
 - Improving models of final state interactions, which may call for further experimental input from other communities such as pion-nucleus scattering.
 - Expressing these improvements of the nuclear model in terms that can be successfully incorporated in the simulation of neutrino events by neutrino event generators.
 - Sure, GiBUU deserves at least a footnote.
- However goal is to emphasize that considerable effort needed to bring NP and HEP to partner in supporting our efforts. Particularly in funding nuclear theorists working explicitly on this topic – not as a "hobby'! This involves laboratory Directors working with us to break down barriers at the funding agency level.
- What is explicitly holding back the several NP-theorist / HEP-experimental proposals that languish in the halls of DOF?
 - For example How to extend GFMC to Ar, relativistic and excusive interactions AND employ in event generators.
- Producing more accurate nucleon kinematics and yielding out-of-nucleus multiplicities in 2p2h effects including MEC and SRC.
- Nuclear effects in pion production.
- What are non-resonant contributions to multi-pion production?


<u>Particular Challenges: Experimentalists</u> (non-exhaustive....)

- Do we need a new (expensive/difficult) nu-nucleon experiment?
 - How would (much) more accurate nu-nucleon results affect oscillation physics? How much should accuracies be improved to justify the cost and effort?
 - Possibly covered by workshop: Fundamental Physics with Electroweak Probes of Light Nuclei (INT-18-2a)
 June 12 July 13, 2018 S. Bacca, R. J. Hill, S. Pastore, D. Phillips
- How do we bring e-A information into our conclusions? Do we need new e-A experiments to help with our understanding of the physics?
- More practical how to better inform ND design on the basis of known unknowns for which we do not have dials in MC ...

Particular Challenges: Monte Carlos Simulations (non-exhaustive ...)

- Need for better understanding of details (and tricks) in implementation in MCs. Is everybody using the same terminology? Are models implemented in a correct and consistent way?
 - Some MCs implement removal energy as modification of the target nucleon mass, others as the difference between initial and final masses.
 - Nieves CCQE in Genie is implemented only on the leptonic part, the hadronic is generated randomly. Is there any effect or bias in doing so ? Without the details you might think that is the same implementation as in NEUT but it is not.

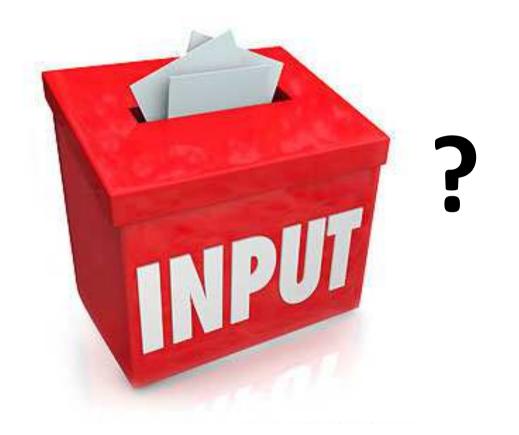
Coming to

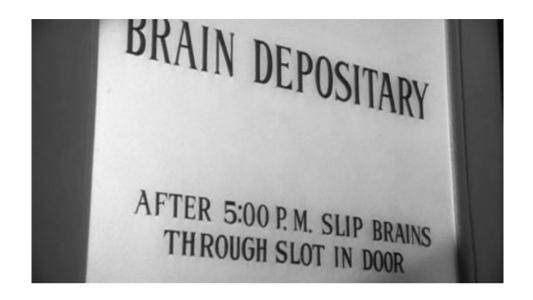
BUT, WHAT'S THE POINT?

Issues:

- General lack of manpower/money (particularly for nuclear theorists),
 the situation in Europe is different compared to the US
- We need enthusiasm! We should be generating excitement in the (nuclear, particle, theory)
 community. We want buy in/interest beyond existing community. What is the best way to do
 so?

Solutions ??? (non-exhaustive list ... please complete ...)


- A number of focused workshops bringing together people such as the Paris 2p2h workshop in April 2016....
 - ✓ Workshops should highlight solutions to well-defined problems
 - ✓ workshops should also highlight new physics signals/use in xsec (dark matter, and anomolous photon production) to attract new contributors to the community
 - ✓ INT workshops (as mentioned)
 - ✓ An example: hold a mini-series of two workshops at CERN in collaboration with the CERN Neutrino Platform, in both its experimental and theoretical parts, the goal is to develop a concept to be presented as part of the European Strategy Process and inform US funding agencies of priorities....
 - ✓ Inform NuSTEC of workshops to avoid date/personnel clashes...


Solutions ??? (...continued)

- The situation is different in Europe from in the US
 - Smaller countries with need to apply to individual funding agencies
 - Need a stronger unified voice of relevant nu nuclear physicists in Europe

- Inclusion of theorists directly in experimental collaborations.
- New programs
 - Japanese European US exchange of theorists? Longer term stays to really work are valuable (and we want to look at funding)
 - Bringing the new CERN initiative into the program
 - Extend the neutrino nuclear theorists community in the US.

Comments on the NuSTEC white paper:

https://docs.google.com/document/d/10IdsLuyzo giiIHujXr5VgtreatZdEsjRGWaTvJiUqOo/edit?usp=sh aring

Feedback on Challenges:

https://docs.google.com/document/d/1plxiQSAyVanJ91tZU74vU8KZnsr8Aq1NJQXTWBZVq M/edit?usp=sharing