FOR EXCELENCIA EXCELENCIA SEVERO OCHOA	Action and radiative decay of hos at the Booster Neutrino Eduardo Saúl Sala, Luis Álvarez Ruso Departamento de Física Teórica and IFIC Centro Mixto Universidad de Valencia-CSIC	heavy BeamImage: Construction of the second seco
MiniBooNE anomaly	Parameters	Fitted parameters
Excess of <i>e</i> -like events in $\nu_{\mu} \rightarrow \nu_{e}$ searches:	Values of Masip et al. [2]: • Mass of the heavy neutrino, $m_h = 50 \text{ MeV}$ • Mixing angle, $ U_{\mu h} ^2 = 3 \times 10^{-3}$ • Lifetime, $\tau_h = 5 \times 10^{-9} \text{s}$ • Branching ratio, $BR_i = \frac{(\mu_{tr}^i)^2}{\sum_i (\mu_{tr}^i)^2} \rightarrow BR_{\mu} = 10^{-2}$	Within the LSND compatible limits by Gninenko [1]: • $m_h = 68.6 \text{ MeV}$ • $ U_{\mu h} ^2 = 10^{-2}$ • $\tau_h = 2.5 \times 10^{-9} \text{ s}$ • $BR_\mu = 8.9 \times 10^{-4}$
	$ u_h$ production cross sections	Photon event distributions
$\begin{array}{c} \text{III} & 1.0 \\ 0.5 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 1.2 \\ 1.4 \\ 1.5 \\ 3.0 \\ E_v^{\text{QE}} (\text{GeV}) \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• Neutrino mode: 0.0 0.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 1.0 1.0 1.5 0.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 0.5 0.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 0.

Aguilar-Arevalo et al. PRL110.161801 (2013)

No satisfactory explanation in terms of oscillations.

Heavy sterile neutrino model

Gninenko's proposal [1]. Masip et al. added electromagnetic production channel [2],

Heavy neutrino production

Short-Baseline Neutrino Oscillation Program, Fermilab

Neutral current interactions (NC):

A(p

$$\begin{split} \mathcal{L}_{I} &= -\frac{g}{2\cos\theta_{W}} j^{\mu} Z_{\mu}; \qquad j^{\alpha} = \frac{1}{2} \overline{\nu}_{\mu} \gamma^{\alpha} (1 - \gamma_{5}) \nu_{\mu}, \\ \nu_{h}' &= \cos\theta \nu_{h} + \sin\theta \nu_{\mu}, \\ \nu_{\mu}' &= -\sin\theta \nu_{h} + \cos\theta \nu_{\mu}, \end{split}$$
with $\sin\theta = U_{\mu h}$,

 $i\mathcal{M} = -i U_{\mu h} \frac{G_F}{\sqrt{2}} \overline{u}(k') \gamma^{\mu} (1-\gamma_5) u(k) \langle X|J_{\mu}|N \rangle.$

Electromagnetic interactions (EM):

$$\mathcal{L}_{eff} = \frac{1}{2} \mu_{tr}^{i} \left[\overline{\nu}_{h} \sigma_{\mu\nu} \left(1 - \gamma_{5} \right) \nu_{i} + \overline{\nu}_{i} \sigma_{\mu\nu} \left(1 + \gamma_{5} \right) \nu_{h} \right] \partial^{\mu} A^{\nu} ,$$

$$i\mathcal{M} = \frac{i e \, \mu_{tr}^{i}}{2 \left(q^{2} + i \epsilon \right)} \, \overline{u}(k') \, q_{\alpha} \, \sigma^{\alpha\mu} (1 - \gamma_{5}) u(k) \left\langle X | J_{\mu} | N \right\rangle .$$

 ν_h production and radiative decay at MiniBooNE (CH₂)

 $u_{\mu} + \mathbf{p} \rightarrow \nu_{h} + \mathbf{p}$ $\nu_{\mu} + {}^{12}\mathbf{C} \rightarrow \nu_{h} + {}^{12}\mathbf{C} \qquad \mathbf{col}$

 $\frac{d\Gamma}{d\cos\theta_{\gamma}} = \frac{(\mu_{tr}^{i})^{2} m_{h}^{3}}{32\pi} \left(1 \pm \cos\theta_{\gamma}\right)$

We can calculate the energy and the angular distributions of the photons inside the detector:

Antineutrino mode with efficiency:

12

Shape and total number of events of the distributions in the two models are different. Therefore we can test the model and compare with other sources of signal.

We have analogous predictions for **SBND** and **ICARUS**.

(a)

References

S. N. Gninenko, Phys. Rev. D 83 (2011) 015015
 M. Masip, P. Masjuan and D. Meloni, JHEP 1301 (2013) 106
 E. Wang, L. Alvarez-Ruso and J. Nieves, Phys. Rev. C 89 (2014) no.1, 015503