Fermilab **ENERGY** Office of Science

Experimental Summary

Deborah Harris, Fermilab

Experimental Sessions

- Systematic Uncertainties and Impact on Oscillation Measurements
- Electron Scattering and other Non-neutrino measurements
- Shallow Inelastic, Deep Inelastic, and Inclusive Scattering
- Neutrino Flux Calculations and Measurements
- Neutrino Pion Production and other Inelastic Interactions
- Neutrino NC and CC Scattering without Pions
- Future Experiments
- Low Energy Neutrino Scattering

Compare to NuINT 2015 Experimental Summaries

09:00	Summary 1 : Neutrino flux	Dr. Megan FRIEND
	Icho-Kaikan, Osaka University Suita Campus	09:00 - 09:20
	Summary 2 : Systematics	Prof. Richard GRAN
	Icho-Kaikan, Osaka University Suita Campus	09:20 - 09:40
	Summary 3 : CC and NC quasi-elastic scatterings	Kevin MCFARLAND
	Icho-Kaikan, Osaka University Suita Campus	09:40 - 10:00
10:00	Summary 4 : Pion production and the other inelastic interactions	Prof. Sajjad ATHAR
	Icho-Kaikan, Osaka University Suita Campus	10:00 - 10:20
	Summary 5 : Shallow and deep inelastic scatterings	Dr. Jorge MORFIN
	Icho-Kaikan, Osaka University Suita Campus	10:20 - 10:40

11:00	Summary 6 : Low energy neutrino scattering	Dr. Yusuke KOSHIO
	Icho-Kaikan, Osaka University Suita Campus	11:00 - 11:20
	Summary 7 : Electron scatterings	Prof. Omar BENHAR et al.
	Icho-Kaikan, Osaka University Suita Campus	11:20 - 11:40
	Summary 8 : Generators	Dr. Hide-Kazu TANAKA
	Icho-Kaikan, Osaka University Suita Campus	11:40 - 12:00
12:00	Summary 9 : Future experiments	Dr. Mark HARTZ
	Icho-Kaikan, Osaka University Suita Campus	12:00 - 12:20

35 minutes instead of 3 hours...choices were made

Fermilab

Focus of this talk: Results shown at NuINT2017

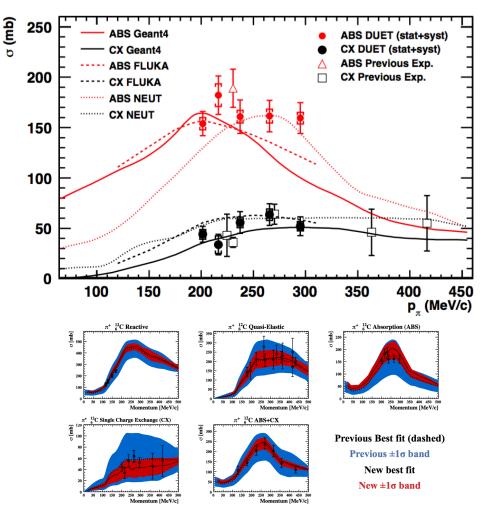
- Pion Scattering measurements
- New Flux Predictions
- **Electron Scattering measurements**
- Inclusive CC Measurements
 - All Recoil
 - Electron Neutrinos
 - Low Recoil
- All momentum transfer Neutrino-Pion Production Measurements Low momentum transfer
- **Pion-less Neutrino CC Measurements**
- Looking ahead: are we there yet?

🛠 Fermilab

Pion Scattering Results

‡ Fermilab

Pion Scattering Results: LArIAT


 Thin slice technique for cross section (J. Asaadi)

Elastic Scattering Candidate

Pion Scattering Results: DUET

• Multi-faceted experiment at Triumf (Pinzon)

Data spanning five decades!

Reference	Polarity	Targets	$p_{\pi} [\text{MeV}/c]$	Channel(s)
B. W. Allardyce et al. [11]	π^{\pm}	C, Al, Pb	710-2000	REAC
A. Saunders et al. [12]	π^{\pm}	C, Al	116-149	REAC
C. J. Gelderloos et al. [13]	π^{-}	C, Al, Cu, Pb	531 - 615	REAC
F. Binon et al. [14]	π^{-}	С	219 - 395	REAC
O. Meirav et al. [15]	π^+	С, О	128 - 169	REAC
C. H. Q. Ingram [16]	π^+	0	211 - 353	QE
S. M. Levenson et al. [17]	π^+	\mathbf{C}	194-416	QE
M. K. Jones et al. [18]	π^+	C, Pb	363-624	QE, CX
D. Ashery et al. [19]	π^{\pm}	C, Al, Fe	175 - 432	QE, ABS+CX
H. Hilscher et al. [20]	π^{-}	С	156	CX
T. J. Bowles [21]	π^{\pm}	0	128-194	$\mathbf{C}\mathbf{X}$
D. Ashery et al. [22]	π^{\pm}	C, O, Pb	265	$\mathbf{C}\mathbf{X}$
K. Nakai et al. [23]	π^{\pm}	Al, Cu	83-395	ABS
E. Bellotti et al. [24]	π^+	C	230	ABS
E. Bellotti et al. [25]	π^+	С	230	ABS
I. Navon et al. [26]	π^+	C, Fe	128	ABS+CX
R. H. Miller et al. [27]	π^{-}	C, Pb	254	ABS+CX
E. S. Pinzon Guerra et al. [28]	π^+	C	206-295	ABS, CX

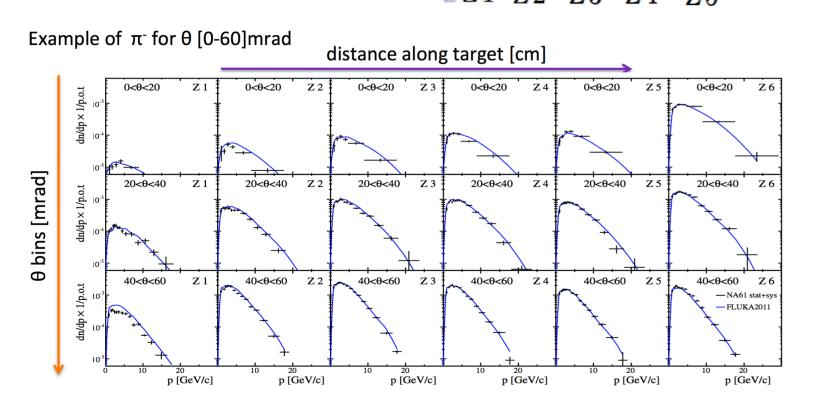
Exhaustive literature search to constrain NEUT

Pion Scattering Conclusions

- These are hard measurements
- A lot of progress has been made on several materials
- Starting to get handles on pion scattering in Argon

- Need this component to be able to make best use of our neutrino data
 - Clues to role of final state interactions
 - Critical for simulating detector response
- Especially in the longer term: DUNE needs to keep pions as signal process, will need more work here to prepare for that

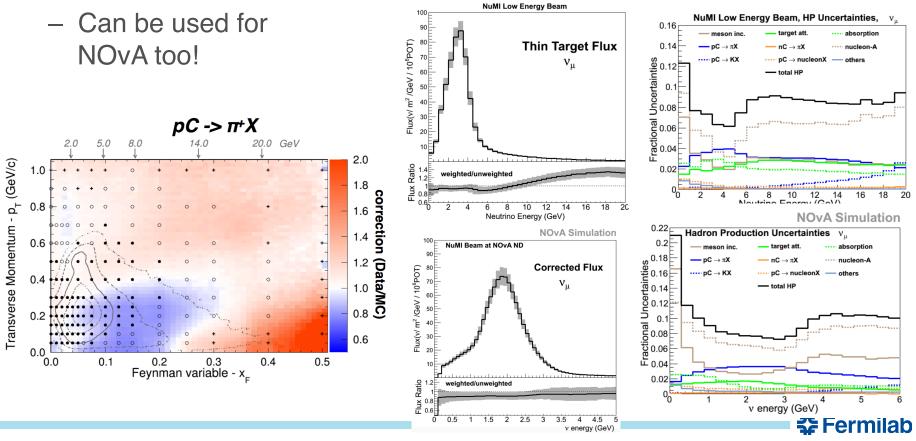
🚰 Fermilab


New Results on Flux Predictions

30 June 2017 Deborah Harris | NuINT 2017 | Experimental Summary

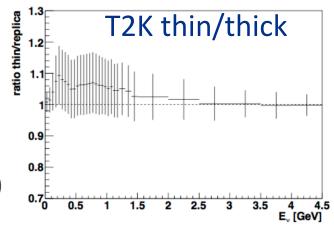
‡ Fermilab

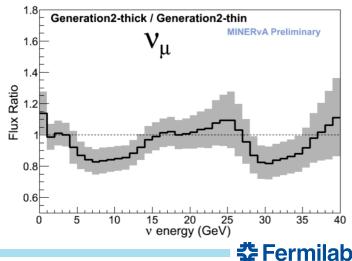
New Results shown at NuINT 2017: NA61/SHINE


• Old results use thin target prediction, now the thick target results are available (K. Kowalik) $\xrightarrow{\mathbb{P}} \overbrace{Z1}^{\underline{18cm}} \underbrace{Z2}_{Z3} \xrightarrow{Z4}_{Z4} \underbrace{Z5}_{Z5}$

🛟 Fermilab

"New" Results shown at NuINT 2017: NuMI flux

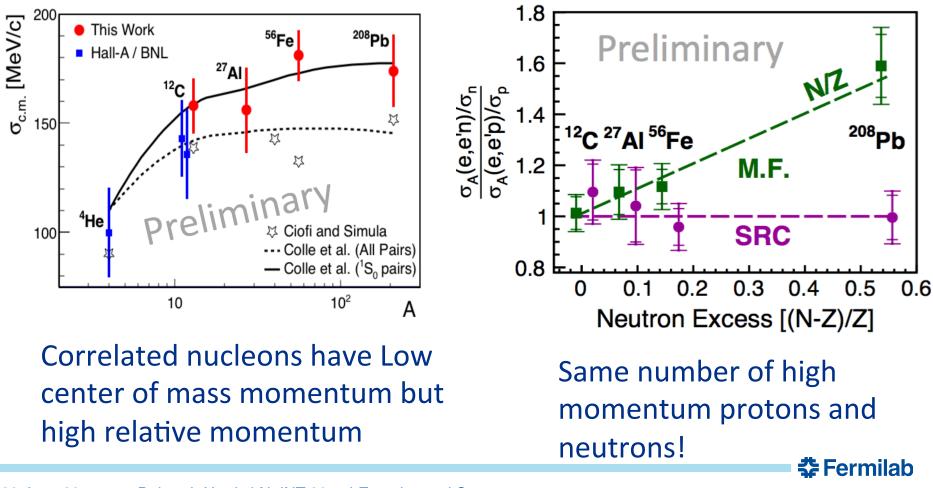

- New since last NuINT 2017: NuMI Flux Predictions(L. Aliaga)
 - Exhaustive campaign to correct GEANT simulation to the world's hadron production and interaction data
 - NA49 plays biggest role in reducing the uncertainties


30 June 2017 Deborah Harris I NuINT 2017 | Experimental Summary

Flux Conclusions

- Absolute cross section measurements only as good as flux
- Efforts worldwide to harness available data
 - T2K: NA61/SHINE (K. Kowalik)
 - NuMI: NA49++ (L. Aliaga)
 - Booster Neutrino Beam: HARP
 - LBNF (for DUNE): SHINE? (A. Bashyal)
- These data answer some questions, raise others: why do thin and thick target-based flux predictions disagree?
- Efforts worldwide to get new data
 - Better instrumentation in very forward region of NA61/SHINE
 - New spectrometer for LBNF with replica beamline

NuMI thick/thin

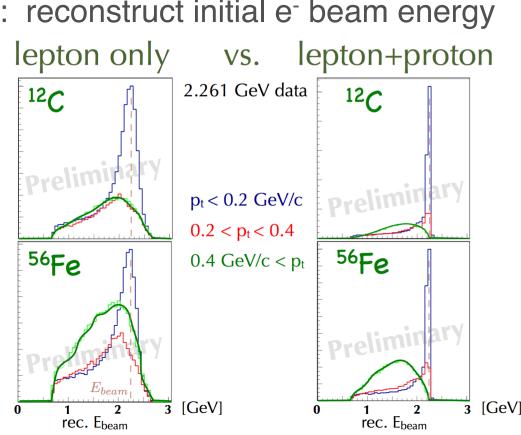

Electron Scattering Results

30 June 2017 Deborah Harris | NuINT 2017 | Experimental Summary

‡ Fermilab

Electron Scattering Results: CLAS

 Looking at ratios of different final states in e-scattering: see a dependence of nuclear asymmetry (O. Hen)

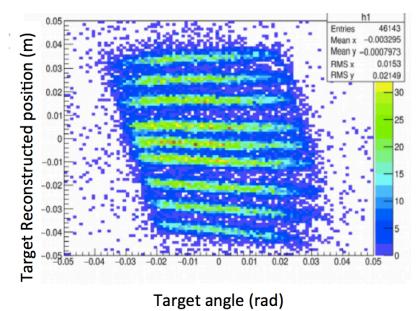


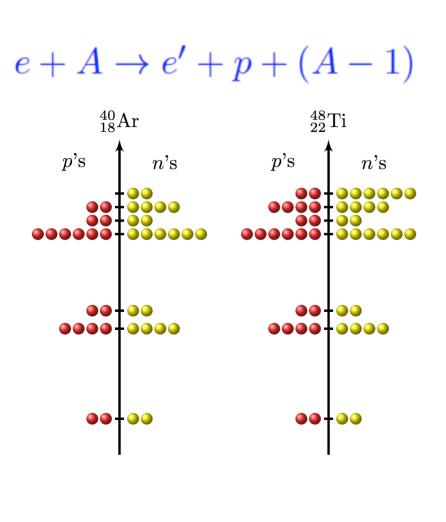
Electron Scattering Results: JUPITER

New measurements of R (σ_1 / σ_T) in electron scattering to measure nuclear effects $Q^2=2 \text{ GeV}^2$ (A. Bodek) σ_D^T/σ_C^T Shows that simple Fermi smearing doesn't work More nuclei measurements ຊັ 0.04 ເຊິ່ 0.02 soon to follow 1.5 2.5 35 W² (GeV²) сэгј QE+RES with ESF. ESF Q2=2 GeV2 Carbon RC-RD $Q^2=2 GeV^2$ 0.2 Phys **O2=2 GeV2** \mathbf{R}_{c} - \mathbf{R}_{D} 0.2 0.1 RC-RD -0.2-0.1 o 0.04 Blue Simple W₁ W₂ smearing -0.2 £ 0.02 -0.3 0.5 1.5 0.5 3.5 Data W² (GeV²) 🛟 Fermilab

Future Electron Scattering Results: CLAS

- New way to look at e- data: reconstruct initial e⁻ beam energy (E. Cohen)
 lepton only
 vs.
 lepton+proton
 - Generator comparisons are underway
 - Powerful tool to test models of FSI even for v interactions
 - Will also look at "transverse" variables
 - Plots at right are simulation, but data is available




Two ways of estimating energy, same events: "QEhypothesis", or "add proton and muon energy"

🛟 Fermilab

Future Electron Scattering Results: E12-14-012

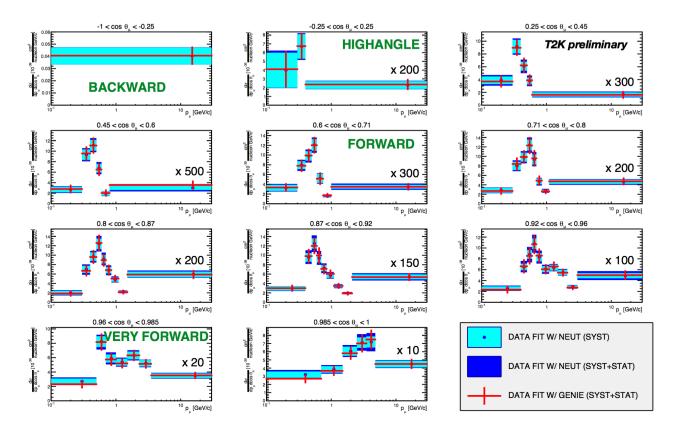
- New data taken this Spring on Ti and Ar at JLAB (C. Mariani)
- Spectral functions for Argon to be measured for p and n both here!

30 June 2017 Deborah Harris I NuINT 2017 | Experimental Summary

🛟 Fermilab

Electron Scattering Conclusions

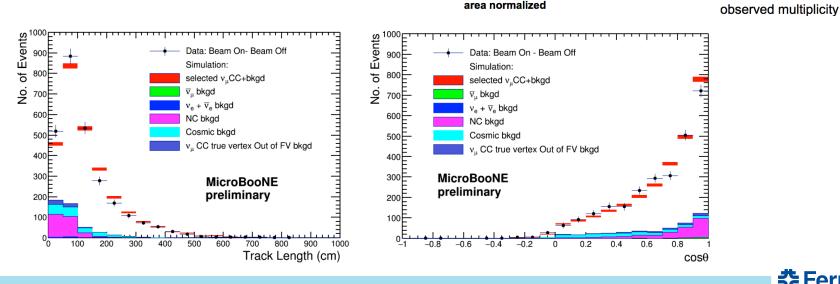
- This is an important part of model building
- People are coming up with new ways to use the electron scattering data that already has been taken
- New proposals (and new data!) are out there to get even more help with models
- More work needs to be done to make sure that the theory side is also consistent with the electron scattering data


Inclusive Charged Current Measurements

30 June 2017 Deborah Harris | NuINT 2017 | Experimental Summary

‡ Fermilab

Inclusive v_{μ} cc: T2K


- Improved selection for higher coverage, better purity
- Cross Sections in 2 dimensions on carbon, ready for comparisons with Models! (A. Garcia)

20

Inclusive v_{μ} cc: MicroBooNE

- Shape normalized event distributions so far, looking forward to cross sections (A. Furmanski)
- First look at multiplicity
- Large cosmic ray subtraction, but better cosmic rejection methods in the works

event fraction

 10^{-2}

10⁻³

Observed Charged Particle Tracks in Neutrino Interactions

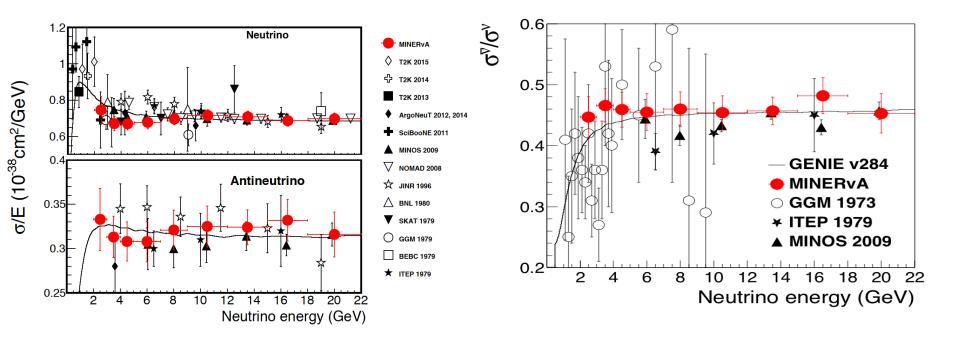
KE_{μ,π}>37 MeV,KE₂>82 MeV

MicroBooNE Data (stat only) MC Default (stat+syst. errors)

MicroBooNE Preliminary (Includes muons)

5

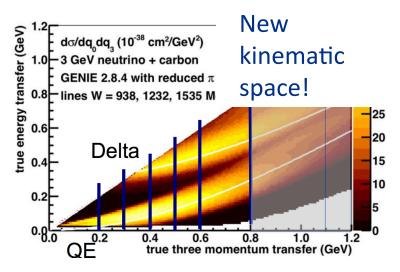
MC with MEC

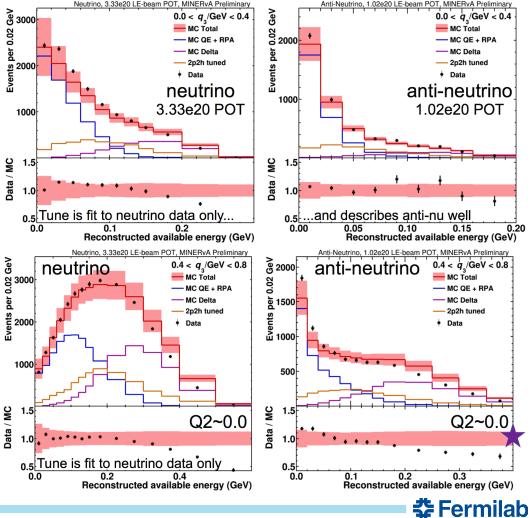

MC with TEM

30 June 2017 Deborah Harris I NuINT 2017 | Experimental Summary

🛟 Fermilab

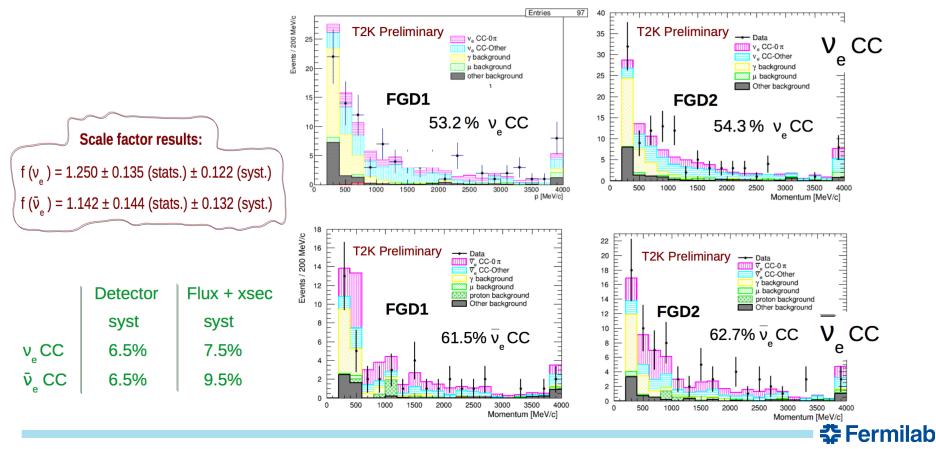
Inclusive v_{μ} cc and anti- v_{μ} cc: MINERvA


- Use the "low-v" method to determine flux, reduces systematic uncertainties (D. Rimal, as interpreted by J. Nelson)
- Updated result from earlier measurement with new model and anti- v_{μ}/v_{μ} normalization


🛟 Fermilab

Inclusive v_{μ} cc and anti- v_{μ} cc "low q": MINERvA

• Low recoil "Inclusive" v_{μ} cc interactions in antineutrinos: MINERvA (R. Gran)


- Model that works for "filling in the dip" in neutrino data also agrees with antineutrino data!
- Cross Sections extracted

30 June 2017 Deborah Harris I NuINT 2017 I Experimental Summary

Inclusive v_e and anti- v_e cc: T2K

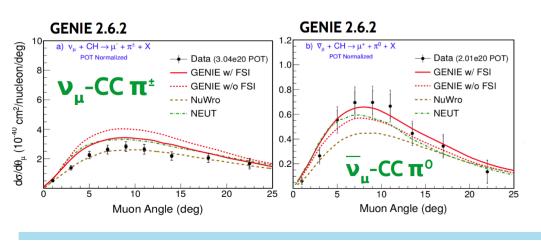
- First glimpse at "pure" antineutrino CC events!(S. King)
 - Quoting normalization to predicted ν_{e} event rate, biggest systematic is acceptance

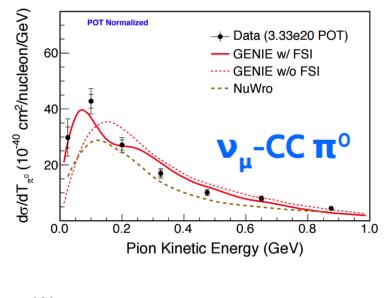
Inclusive CC measurement Conclusions

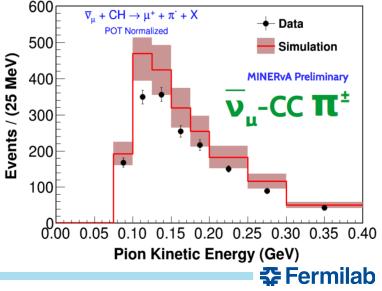
- Starting to accumulate large inclusive CC data sets
 - Muon and electron neutrinos
 - Neutrinos and antineutrinos
 - Single and double differentials
- Inclusive measurements are "final cross-check" of model but are hard for model building since there could be processes missing
- See that ν_e 's are very hard experimentally, will need theory to get most precise ν_e/ν_μ ratios (K. McFarland)
- New ways of looking at inclusive data: use two dimensions that correlate the hadronic side and the lepton side (q0,q3)
- See that a model that was fit to neutrino data works with antineutrinos!

🔁 Fermilab

Pion Production Measurements

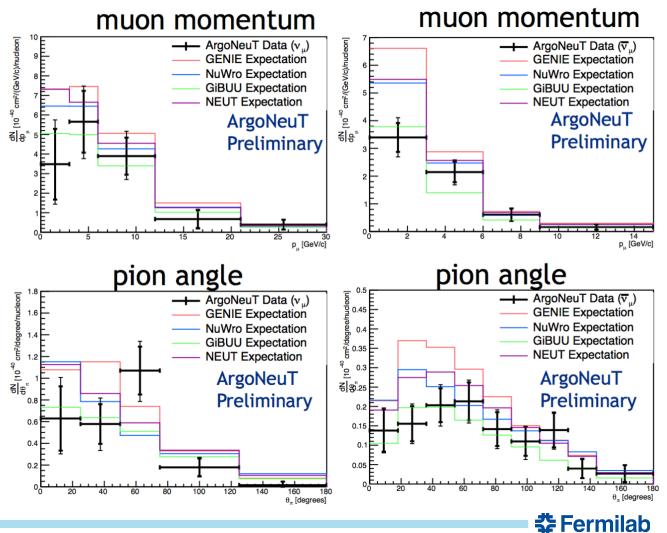

30 June 2017 Deborah Harris I NuINT 2017 I Experimental Summary

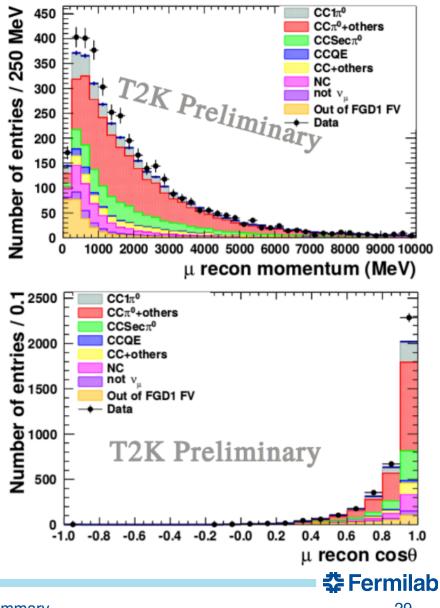

26


‡ Fermilab

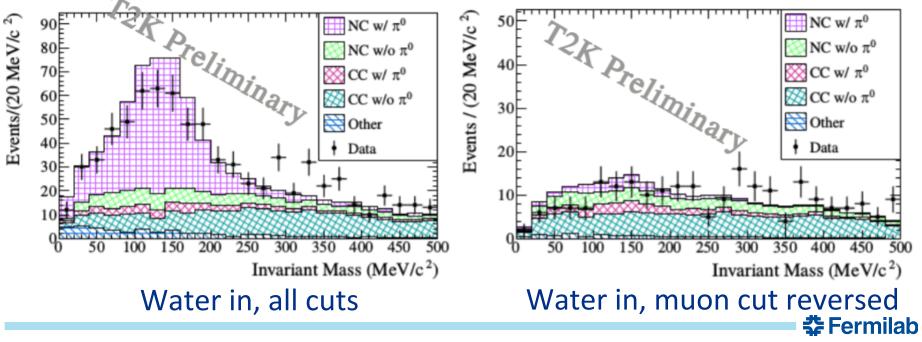
CC Pion Production (times 4): MINERvA

- All 4 combinations shown:
 ν, anti-ν, π[±], π⁰(A. Ramirez)
- Brand new: ν π⁰ production
 See O. Altinok @FNAL, July 7
- First glimpse: ,anti-v π^{\pm} production
- Updates for previous pion measurements with better flux also ready



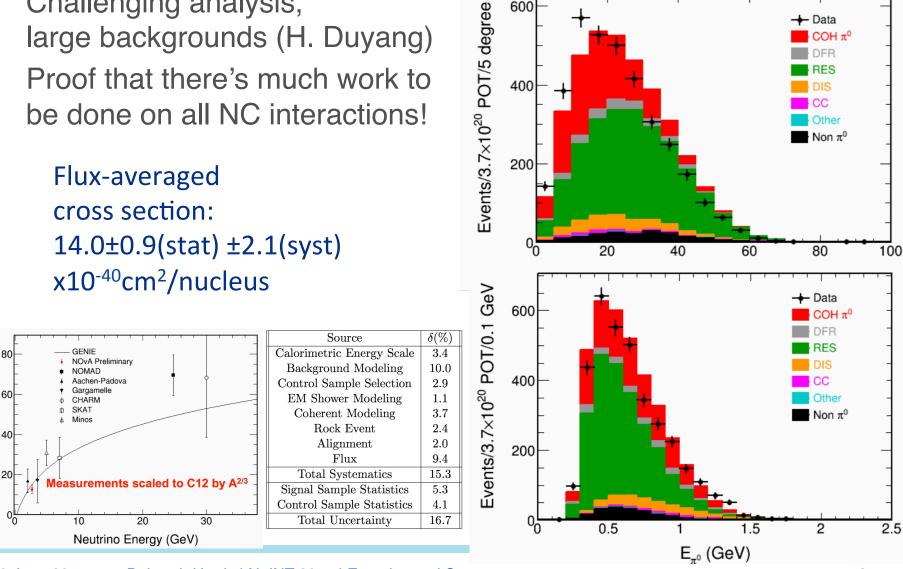

CC π^{\pm} production on Argon: Argoneut

- Identify one muon and one other track with
 PID like a pion (T. Yang)
- Neutrino and Antineutrino events shown
- Other variables also reported (pion angle, mu-pi angle)


CC π^0 production on CH: T2K

- Contributions from resonant and DIS interactions (M. Batkiewicz)
- Cuts end up selecting high energy events, mostly multi-π production
- Total cross section: $\sigma^{data} = (1.239 \pm 0.034(stat))$ +0.157(syst) +0.175(flux)) -0.158(syst) -0.149(flux))
 - $\cdot 10^{-39} \, cm^2 / nucleon$

NC π^0 production on water: **T2K**


- Water-in water out subtraction (M. Batkiewicz)
- Two backgrounds: non-π⁰ events on water, plus non-water events
- Result quoted as ratio to NEUT prediction
 data/MCratio=0.68±0.26(stat)±0.44(syst)±0.12(flux)

NC Coherent π^0 production: NOvA

- Challenging analysis, large backgrounds (H. Duyang)
- Proof that there's much work to be done on all NC interactions!

 σ (COH π^0) (10⁻⁴⁰ cm²/Nucleus)

600

400

NOvA Preliminary

COH π^0

RES

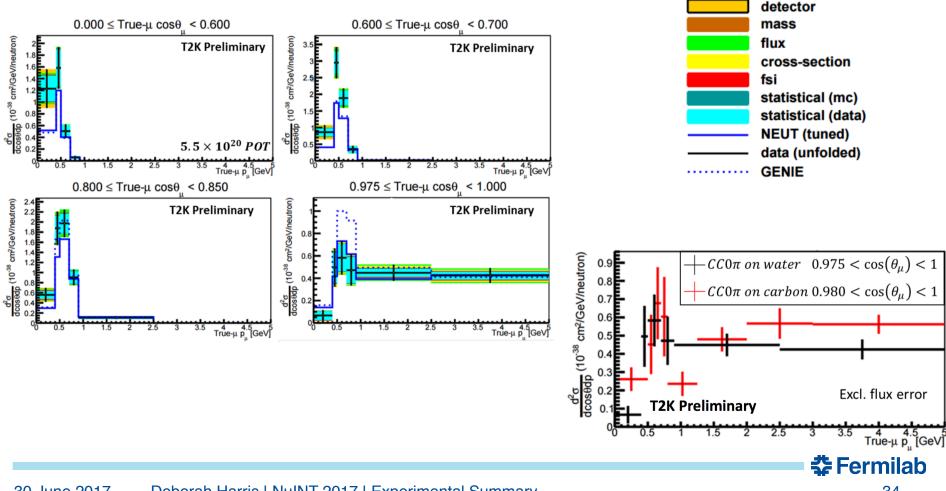
Other Non π^0

🔶 Data

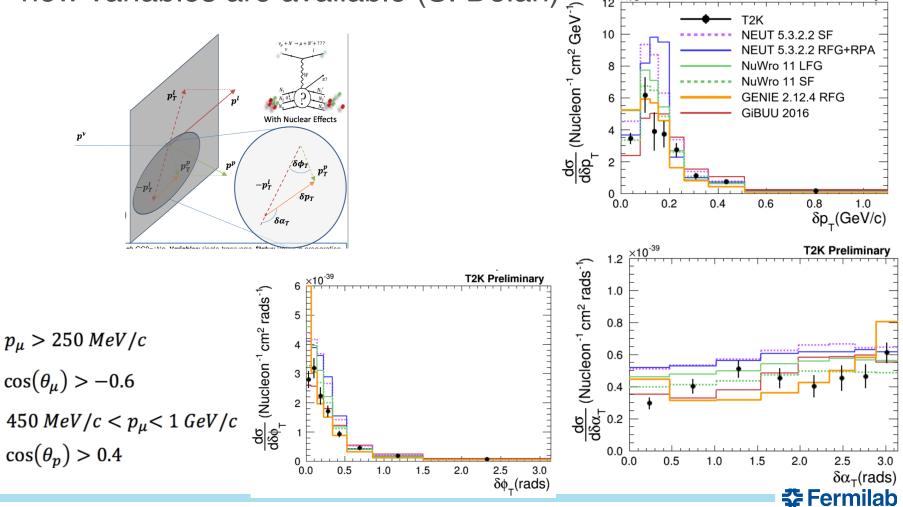
Pion Production Conclusions

- Gathering many more channels on pion production
 Neutrino, antineutrino, charged neutral
- Gathering new nuclei on pion production!
 - Water and Argon joining the mix, plus new CH and CH₂ results
- Clearly a long way to go on neutral current channels
- Many Puzzles exist in all these measurements
- Pion production can pick out higher neutrino energies than 0pion channels in T2K, big overlap in all these measurements
- Will be able to beat T2K and MINERvA measurements against eachother to solve the puzzle:
 - Is it theory, signal definition, measurement technique, all of the above?

🔁 Fermilab

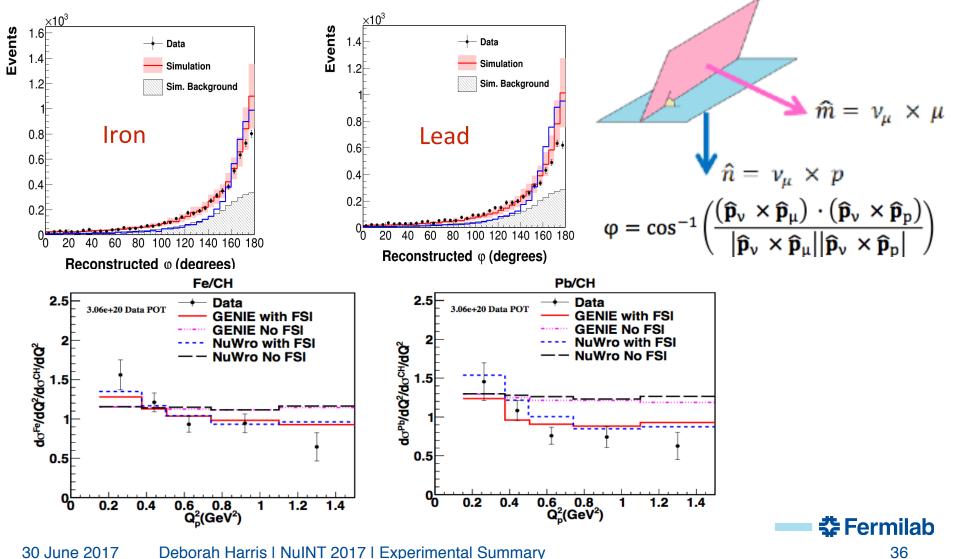

Pion-less Charged Current Measurements

‡ Fermilab

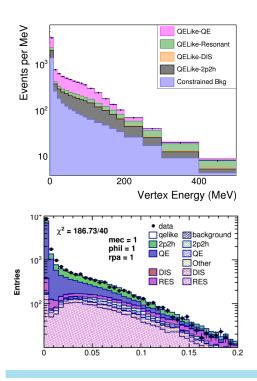

Pion-less CC on CH and Water: T2K

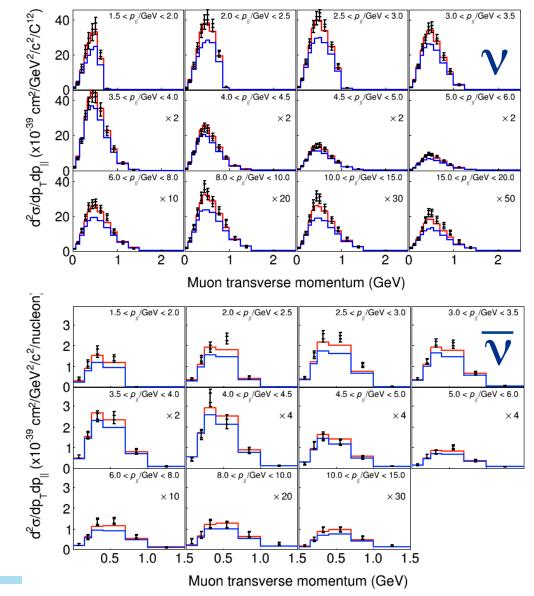
 Shows new distributions for double differential variables on Water: welcome to A-dependence! (S. Dolan)

Pion-less CC, from the proton side: T2K


 When you reconstruct proton angle and momentum, many new variables are available (S. Dolan) 12 × 10⁻³⁹

30 June 2017 Deborah Harris I NuINT 2017 I Experimental Summary


Pion-less CC, from the proton side: MINERvA


• Compare C, Fe, Pb to Scintillator (M. Betancourt)

Pion-less CC, from the proton side: MINERvA

 Neutrino and antineutrino double differential cross sections both favor neutrino-mode "q0-q3" fit (D. Ruterbories)

Pion-less CC, from the proton side: MINERvA

Ratio to Default GENIE

1.5 1.0

0.5 0.0

1.5

1.0 0.5

0.0

1.5 [_{ITT}]

.5 < p_/GeV < 2.0

3.5 < p_/GeV < 4.0

6.0 < p_/GeV < 8.0

2.0 < p /GeV < 2.5

4.0 < p //GeV < 4.5

8.0 < p_/GeV < 10.0

2.5 < p /GeV < 3.0

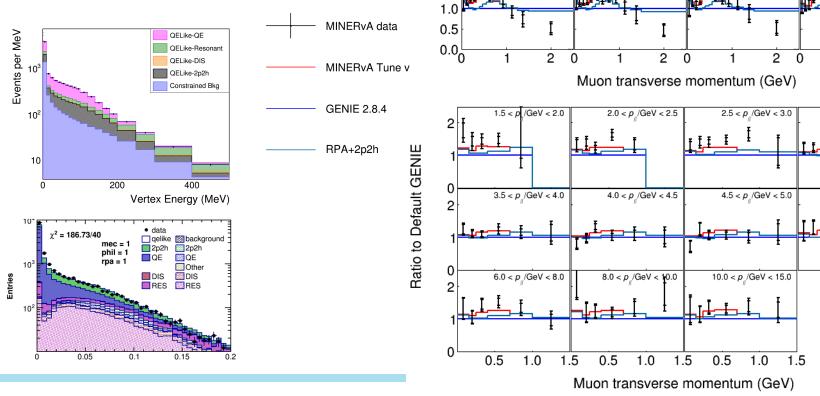
4.5 < p /GeV < 5.0

10.0 < p /GeV < 15.0

3.0 < p /GeV < 3.5

5.0 < p_/GeV < 6.0

< p /GeV < 20.0


2

3.0 < p_/GeV < 3.5

5.0 < p_/GeV < 6.0

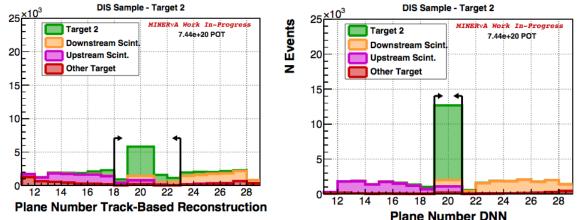
1

 Neutrino and antineutrino double differential cross sections both favor neutrino-mode "q0-q3" fit (D. Ruterbories)

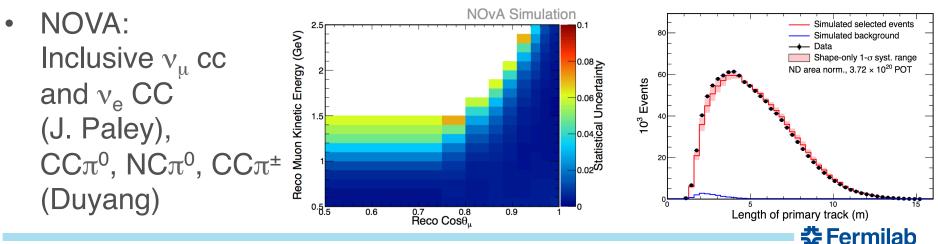
30 June 2017 Deborah Harris | NuINT 2017 | Experimental Summary

Pion-less CC Interaction Conclusions

- MINERvA and T2K's measurements very mature
- Iterations with this community mean that we have evolved to a less model-dependent signal definition, and analysis cuts
- By looking at the hadron side, you get a new handle on the nuclear effects, and even more so if you compare across different nuclei
- MINERvA's inclusive low recoil fits to NEUTRINO EVENTS provide a consistent model that works on antineutrino low recoil events AND the muon side alone!
- Huge progress since the last NuINT...

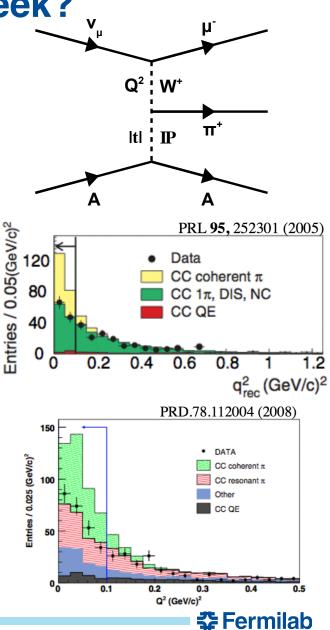

🏞 Fermilab

Future Neutrino Interaction Results


V Events

• MINERvA ME DIS Ratios:

look forward to better statistics and systematics thanks to machine learning (A. Norrick)



- T2K v_e CC: look at 3 channels separately, CC0 π , CC1 π , CC multi- π
- MicroBooNE: coming soon: NC elastic, CC π^0 , CC0 π

What DIDN'T we talk about this week?

- Remember the Coherent Pion puzzle?
 - Effect was seen at high energies but not at low energies
 - Low energy measurements plagued by not being able to reconstruct t
 - This meant that experiments had model-dependent efficiencies and background subtraction techniques
 - Eventually MINERvA and T2K measured this process in a modelindependent way by reconstructing t and cutting there.
 - Measured Q² distributions did NOT match the generator...

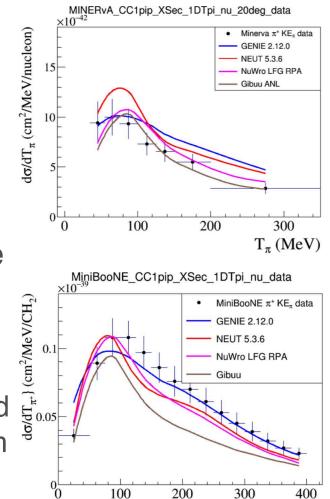
So, you want your result to be useful?

- Learning lessons about how to make a measurement that has an impact on generators and future models
- Be very clear about what your signal is
 - QE or Pion-less?
 - Do you only accept events within some angular region?
 - Does your detector naturally have a momentum threshold?
- Be careful about cuts to isolate your signal that you might not model well
 - Q², vertex energy for QE events, "acoplanarity", etc.
- Try to constrain backgrounds with data whenever possible
 - Think hard about what strategy is least model dependent
- Make sure your systematics really cover the uncertainty
 - Example from MINERvA: if a process is missing, then you won't have included uncertainty in that process, right?

🔁 Fermilab

The tools we need to get there

- Cross Section measurements
 - With full correlation matrices
 - With complete* model systematics
- Flux Predictions
 - Aided by hadron production measurements
 - In situ techniques for hadrons and neutrinos welcome!
- Pion scattering measurements
 - Again with full correlation matrices
- Electron Scattering comparisons
 - Across many nuclei
 - Finding new neutrino-like observables
- NUISANCE!

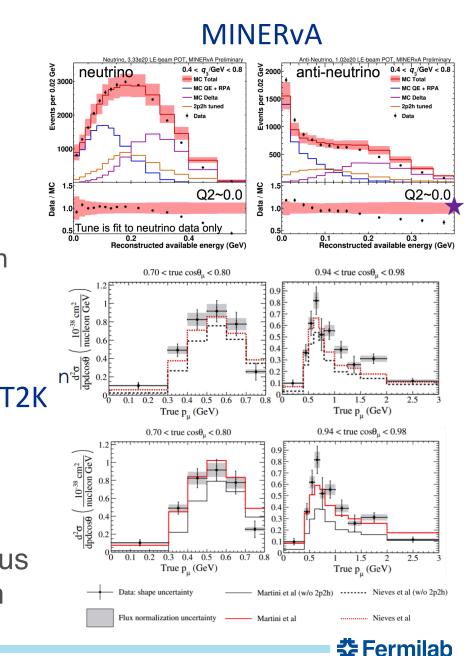

Fermilab

Are we there yet?

- For shallow and deep inelastic scattering: we have a long way to go
- Luckily we have time to get there
- DUNE will need to understand this region too, just like T2K has to understand pion production

Are we there yet?

- For pion production
 - Not yet...
 - Still see discrepancies
 - Between different channels
 - Between different experiments
 - Models in generators match in some pion channels but not others
 - Want to use full suite of pion production channels
 - We need to take the lessons we learned from 0-π measurements and apply them here: key for NOvA



🚰 Fermilab

 T_{π} (MeV)

Are we there yet?

- For $0-\pi$ interactions:
 - We are, as long as we add
 - Multinucleon correlations (thank you e⁻ scattering)
 - Random phase approximation
 - See features across many measurements
 - From one experiment to another
 - From one neutrino helicity to another
 - Close to a data-constrained model based on theory to get us through the current generation of oscillation experiments

Thanks to our hosts!

- For providing such a welcoming home to inhabit
 With such a well-stocked kitchen
- For accepting so many more of us than you planned to accept
- For providing such a beautiful city to explore