30/06/17

Probing nuclear effects with transverse kinematic imbalance

Stephen Dolan

For the T2K Collaboration

s.dolan@physics.ox.ac.uk

Stephen Dolan

NuInt 2017, Toronto, Canada

T2K

30/06/17

Probing nuclear effects with transverse kinematic imbalance

Stephen Dolan

For the T2K Collaboration

s.dolan@physics.ox.ac.uk

Stephen Dolan

NuInt 2017, Toronto, Canada

Overview

Thanks for voting for my poster!!!

Described the measurement of a $CC0\pi + Np$ ($N \ge 1$) cross section as a function of the single transverse variables

I presented the highlights of this analysis yesterday.

This talk will contain:

- A quick recap
- A closer look at the generator comparisons

Stephen Dolan

Nulnt 2017, Toronto, Canada

Stephen Dolan

NuInt 2017, Toronto, Canada

$CC0\pi$ in STV - Fermi Motion and FSI

Moving from CCQE→CC0Pi+Np, STV still a probe of nuclear effects

Quasi-real CCOPi selection, keep events within rough ND280 acceptance : No Pions, 1 Muon, >0 Protons. $p_{\mu} > 250 \text{ MeV}, p_p > 450 \text{ MeV}, \cos(\theta_{\mu}) > -0.6, \cos(\theta_p) > 0.4$

$CC0\pi$ in STV - 2p2h and M_A

M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 80, 065501 (2009)

J. Nieves, I. R. Simo, and M. J. V. Vacas, Phys. Rev. C 83, 045501 (2011)

- STV shape invariant with M_A
 - No ambiguity over M_A or nuclear effect contributions (MiniBooNE M_A puzzle)

CC0 π in STV - 2p2h and M_A

M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 80, 065501 (2009)

J. Nieves, I. R. Simo, and M. J. V. Vacas, Phys. Rev. C 83, 045501 (2011)

- STV shape invariant with M_A
 - No ambiguity over M_A or nuclear effect contributions (MiniBooNE M_A puzzle)

ND280 (off axis near detector)

Event Selection

- Require one μ-like and p-like track(s) starting in FGD1 (CH target)
- Use a Michel electron tag and ECal EM shower veto to reject 1π backgrounds
- Use of many samples gives wide kinematic acceptance

Sidebands

 Require extra π-like track(s)

Stephen Dolan

NuInt 2017, Toronto, Canada

10

J. Nieves, I. R. Simo, and M. J. V. Vacas, Phys. Rev. C 83, 045501 (2011)

$CC0\pi$ +Np in STV

Signal Definition

- One muon
- At least one proton
- Nothing else
- Adhere to fiducial constraints

•	Measure fiducial flux-integrated $CC0\pi + Np$ cross section in bins of STV	$p_{\mu} > 250 \; MeV/c$
•	 Restrict cross section to ND280 acceptance — Essential to mitigate model-dependence of acceptance correction 	$ \left \begin{array}{c} \cos(\theta_{\mu}) > -0.6 \\ 450 \ MeV/c < p_{p} < 1 \ GeV/c \\ \cos(\theta_{p}) > 0.4 \end{array} \right $
•	Extract cross section using a binned likelihood fit with a data driven regularisation	For details of unfolding and how model dependence is avoided:
٧	Compare results to predictions available from plethora of generators using NUISANCE	<u>See slides from State of The</u> <u>Nu-tion</u>

Detector: ND280 – FGD1 **Target:** CH **Signal:** CC0 π +Np **Variables:** single-transverse **Status:** Paper in preparation

Stephen Dolan

T2K

The peak position and early bins in δp_T and $\delta \phi_T$ tell us about **Fermi Motion**.

Stephen Dolan

The peak position and early bins in δp_T and $\delta \phi_T$ tell us about **Fermi Motion**.

13

Stephen Dolan

NuInt 2017, Toronto, Canada

p.d.f.

- The peak position and early bins in δp_T and $\delta \phi_T$ tell us about **Fermi Motion**.
- The tails in δp_T and $\delta \phi_T$ and the extent of the rise at large $\delta \alpha_T$ partially isolate the effects of Fermi Motion from **2p2h**.

- The peak position and early bins in δp_T and $\delta \phi_T$ tell us about **Fermi Motion**.
- The tails in δp_T and $\delta \phi_T$ and the extent of the rise at large $\delta \alpha_T$ partially isolate the effects of Fermi Motion from **2p2h**.
- The removal of **FSI** causes a relative deficit of events in the tails, but an increased normalisation.

Stephen Dolan

Shape only generator comparisons

3.0

Shape only generator comparisons

- Preference for a SF + 2p2h franken-model
- Relative excess in the 2p2h enhanced region (for all but GiBUU)

Stephen Dolan

NuInt 2017, Toronto, Canada

Stephen Dolan

NuInt 2017, Toronto, Canada

Stephen Dolan

NuInt 2017, Toronto, Canada

21

T2K

Stephen Dolan

NuInt 2017, Toronto, Canada

Summary

Lots of interesting model separation!

- **Shape**: idep. of $M_A^{QE} \rightarrow$ tells us about:
 - Fermi Motion
 - FSI
 - 2p2h

Characterised by separate STV features

- Full xsec: normalisation is sensitive to: nucleon FSI, M_A^{QE} and RPA
- Results lift important degeneracies

Thank you for listening

Stephen Dolan

BACKUPS

Stephen Dolan

Impact of RPA (relativistic)

NEUT 5.3.2.2 RFG + RPA (relativistic), $M_A = 1.03 \text{ GeV}$, 2p2h is Nieves et. al

Stephen Dolan

Impact of RPA (relativistic)

NEUT 5.3.2.2 RFG, no RPA, $M_A = 1.03 \text{ GeV}$, 2p2h is Nieves et. al

NuInt 2017, Toronto, Canada

Reconstructing the Neutrino Direction

Stephen Dolan

Binned likelihood fitting

- True bin \rightarrow Reco. template
- Vary MC template norms
 (c_i) and compare to data
- Maximise Poisson likelihood + syst. penalty term (using max. gradient decent)
- Equivalent to D'Agostini (1995) with infinite iterations

The ill-posed problem in fit results

- If there is significant smearing between bins → ill-posed problem (a typical feature of all unfolding methods)
- Seen as a "zig-zagging" result with **strong anti-correlations** between bins g³⁰⁰⁰ → Fake Data Truth
- Can apply **regularisation** to penalise such results.
- Many ways to regularise, best method depends on the analysis.
- One option:

$$\chi^2_{reg} = p_{reg} \sum_{i}^{truebins-1} (c_i - c_{i+1})^2 = p_{reg} (\vec{c} - \vec{c}_{prior}) (V_{cov}^{reg})^{-1} (\vec{c} - \vec{c}_{prior}).$$

 But note that the unregularised result is the most correct representation of the truth (and T2K will provide this!)

34

Nulnt 2017, Toronto, Canada

Stephen Dolan

35

Stephen Dolan

36

Stephen Dolan

- Best p_{reg} is the kink of the curve (in this case ~1)
- Balances regulation (in this case smoothness) with bias
- L-curve can be formed on real data data driven regularisation

<u>http://epubs.siam.org/doi/abs/10.1137/1034115</u> <u>http://epubs.siam.org/doi/abs/10.1137/0914086</u> <u>http://arxiv.org/pdf/1205.6201v4.pdf</u> - use in TUnfold

Resolving the ill-posed problem

- Unfolding methods mostly differ in the way they resolve these degeneracies (i.e. their **regularisation** implementation)
- Ideally, regularisation should be selecting the "smoothest" of many (almost) degenerate solutions

- Regularisation always adds some bias
- The unregularised result is the most "correct" representation of the true unfolded result

But the unregularised result looks awful!?

• Consider a two bin result:

$$\chi^{2} = \left(\overline{N_{fit}} - \overline{N_{true}}\right)(V_{cov})^{-1}\left(\overline{N_{fit}} - \overline{N_{true}}\right)$$

$$\chi^2 = 1.69$$
 Good χ^2

Need to see the correlation matrix to tell whether the result is good or not.

But the unregularised result looks awful!?

Consider a two bin result:

0.2