Impact of cross-section uncertainties in the T2K oscillation analyses

Steve Dennis¹ for the **T2K Collaboration**

¹University of Liverpool,

June 25 2017

The T2K Experiment

- Long-baseline neutrino oscillation experiment.
- Uses Super-K as far detector at 295 km, 2.5° off-axis.
 - 50 kt Water Cherenkov oxygen as main target.
- Two purpose built near-detectors, ND280 off-axis and INGRID on-axis.
- Beam energy peaks at around 0.6 GeV.

The ND280

- Magnetised off-axis near detector at 280 m.
- Made up of several complementary subsystems.
- Constrains flux and interaction uncertainties for the oscillation analysis.
- Also used to measure cross sections of neutrino interactions on several different targets.

ND280 Subsystems

• **P0D** - π^0 Detector

- Contains brass and lead targets with scintillator.
- Optionally contains a water target.
- Tracker consists of alternating gaseous argon **TPC**s (time projection chambers) and **FGD**s (fine-grained detectors).
 - **FGD1**, upstream, is entirely scintillator (carbon as nuclear target).
 - FGD2, further downstream, has active scintillator and passive water targets.
- Surrounded by lead-scintillator **ECal**s (Electromagnetic Calorimeters).
- Encased in dipole magnet (recycled from the UA1 experiment), which has the **SMRD** (Side Muon Range Detector) attached to the yoke.
- FGD1 (carbon) and FGD2 (carbon/oxygen) are main targets for oscillation fit constraints.

Neutrino Flux at Super-K

T2K Accumulated Protons on Target

The information in this talk is based on T2K Run1-6.

The T2K Analysis Approach

The Interaction Model

- 2016 T2K analysis done using NEUT 5.3.3.
- Using 26 systematic parameters, using fundamental model parameters where possible.
- Five for 1p1h (one-particle, one-hole).
- Three for 2p2h (two-particle, two-hole).
- Three for resonant single pion production.
- Seven for CC coherent, CC Deep Inelastic Scattering and neutral currents.
- One each for ν_e/ν_μ and $\overline{\nu_e}/\overline{\nu_\mu}$.
- Six for Final State Interactions (FSI).

The Interaction Model - 1p1h

- **1p1h** the neutrino knocks out a single nucleon, as in CCQE.
- M_A^{QE} is the only nucleon-level uncertainty.
- Using the Relativistic Fermi Gas nuclear model.
 - With individual Fermi Momentum and Binding energy parameters for carbon and oxygen.
 - Main near detector target is carbon, main far detector target is oxygen.
- Apply fixed Random Phase Approximation (RPA) effect.

The Interaction Model - 2p2h

- Uses the Nieves 2p2h model in NEUT (Nieves et al PRC 83, 045501, 2011).
- Apply normalisation uncertainty parameter for each of carbon and oxygen, applied equally to ν and $\overline{\nu}$.
 - Main ND target is carbon, but also contains some oxygen.
 - Main FD target is oxygen.
- Additional uncertainty on $\bar{\nu}$ to ν ratio.
 - 2017 analyses will have shape uncertainty on 2p2h.
- Often referred to as MEC (Meson Exchange Currents), the major contribution of this type of interaction in our models.

The Interaction Model - Resonance

- Uses the Rein-Sehgal model in NEUT. (Rein and Sehgal, Annals Phys. 133, 79, 1981).
- Two uncertainties on nucleon form factors:
 - *M_A^{RES} C₅^A*
- Uncertainty on non-resonant pion production contribution.

The ND280 Data Fit for Oscillations

- Fits three topologies in neutrino beam-mode:
 - CC0 π , CC1 π^+ and CC other.
- Four topologies in antineutrino beam-mode:
 - $\overline{\nu_{\mu}}$ CC 1-track and $\overline{\nu_{\mu}}$ CC N-track.
 - ν_{μ} CC 1-track and ν_{μ} CC N-track (wrong-sign).
- Fitting multiple samples allows us to maximise sensitivity to different interaction physics.
- Primary target is the more upstream fine-grained detector (FGD1), with carbon target.
- Now also fit samples from FGD2, which contains an oxygen (water) target.
- Events are fitted in bins of muon momentum and angle.

ND280 ν -mode example events (FGD1).

ND280 $\bar{\nu}$ -mode example events (FGD1).

$\overline{\nu_{\mu}} \text{ CC 1-track}$

$\overline{\nu_{\mu}}$ CC N-track

 ν_{μ} CC N-track (wrong-sign)

ND280 ν -mode pre-fit spectra (FGD1)

• Prefit spectra are underestimated for CC0 π and CC other, but over-estimated for CC1 π .

ND280 $\bar{\nu}$ -mode pre-fit spectra (FGD1)

• Lower number of events in $\bar{\nu}$ samples leads to weaker constraints.

ND280 Fit Results (ν_{μ} flux at SK)

Note - flux parameters generally increased by approximately 10%.

ND280 Fit Results (interaction systematic uncertainties)

ND280 Postfit Spectrum - CC0 π

- Agreement with data is clearly improved by fit.
- Noticeable enhancement of 2p2h contribution.

ND280 Postfit Spectrum - CC1 π

- Total number of events selected as $CC1\pi$ is reduced.
- Relative fraction of true $CC1\pi$ resonance events in this sample is also reduced.

Super-K Uncertainty Correlation Matrix

Prefit Postfit As expected, correlations between flux parameters reduced, and we pick up an anticorrelation between flux and interaction parameters (particularly M_A^{QE} , the first interaction parameter).

Primary event samples - single ring muon-like or electron-like events.

The single ring (CC0 π) samples aim for QE-like or 2p2h-like events. In 2017 analysis, now additionally including ν_e CC1 π events!

Uncertainties on Super-K Event Rates

Source of uncertainty	$\delta N_{SK}/N_{SK}$	Source of uncertainty	$\delta N_{SK}/N_{SK}$
	Asimov A		Asimov A
SKDet+FSI+SI	3.47%	SKDet+FSI+SI	3.85%
FSI+SI	2.50%	FSI+SI	2.45%
SKDet	2.45%	SKDet	3.00%
Flux	3.66%	Flux	3.83%
MEC (corr)	3.90%	MEC (corr)	3.03%
$\operatorname{MECbar}(\operatorname{corr})$	0.05%	MECbar (corr)	2.35%
NC 1gamma (uncorr)	1.46%	NC 1gamma (uncorr)	2.98%
XSec nue/numu	2.63%	XSec nue/numu	1.49%
XSec Tot	5.14%	XSec Tot	5.50%
Flux+XSec	4.12%	Flux+XSec (Pre ND280)	4.67%
Flux+XSec (Pre ND280)	11.47%	$\operatorname{Flux}+\operatorname{XSec}$	13.38%
Oscillations	0.49%	Oscillations	0.27%
All	5.53%	All	6.31%
All (Pre ND280)	12.06%	All (Pre ND280)	14.06%

 ν -mode e-like.

 $\bar{\nu}$ -mode e-like.

- ND280 effectively reduces the uncertainties on the combination of flux and interaction systematics.
- 2p2h (MEC) is still a large effect.

Uncertainties on Super-K spectra due to all systematic uncertainties

As propagated from ND280, decrease in 1π events and an increase in 0π events compared to nominal MC.

Fake-Data Studies

• To evaluate the effects of different models on the T2K results:

- Select alternative set of MC models.
- Generate fake dataset for this true model, without statistical fluctuations.
- Fit using the MC and uncertainties used in the official fits.
- If necessary, update our parameterisation to be appropriate.
- Compare to baseline model equivalent (Asimov).
- Fake-data fits were performed with the accumulated POT up to Run 6 (1.1×10^{21}) .
- We use these results to suggest additional uncertainty parameters that must be included.

Baseline NEUT Model Used

• NEUT v5.3.3

- Llewellyn-Smith CCQE calculation with $M_A^{QE} = 1.21$ GeV.
- By default, this version of NEUT uses the Spectral Function (O. Benhar) nuclear model.
- Motivated by external data fits, T2K instead uses the global Relativistic Fermi Gas nuclear model (Smith-Moniz, 1971), with an additional correction for the relativistic Random Phase Approximation (RPA) by Nieves.
- 2p2h provided by the Nieves model.

Additional Models used for fake data as implemented in NEUT

- Spectral Function (O. Benhar et al. PRD 72, 053005, 2005).
 - Model of O. Benhar with no RPA. $M_A^{QE} = 1.33 \text{ GeV}$ and no 2p2h, motivated by external data fits.
- Nieves 1p1h (J. Nieves et al. PRC 83, 045501, 2011)
 - Uses Local Fermi Gas nuclear model, includes long range nucleon-nucleon correlations for RPA.
 - Significant change to muon $p \theta$ distribution.
- Martini 2p2h (Martini et al. PRC 84, 055502, 2011)
 - Martini 1p1h similar to Nieves 1p1h.
 - Most significant difference more ν 2p2h around T2K flux peak of 0.6 GeV, but not more $\overline{\nu}$.
- Effective RPA
 - Flexible RPA model with 5 free parameters, fitted to MiniBooNE and MINER ν A data.

Spectral Function Fake-Data Fits ($\delta_{CP} = -1.601$)

Bias small at current POT. Will become significant at full T2K POT. No new uncertainty needed yet.

Nieves 1p1h Fake-Data Fits ($\delta_{CP} = -1.601$)

Significant bias in Δm_{32}^2 due to difference in reconstructed neutrino energy distribution.

• This motivated the addition of an extra detector uncertainty for this year's results.

Martini 2p2h Fake-Data Fits ($\delta_{CP} = -1.601$)

The addition of the $\bar{\nu}$ MEC uncertainty parameter makes this model fit appropriately at current POTs.

Effective RPA Fake-Data Fits ($\delta_{CP} = -1.601$)

Fake-Data fits Summary

- Spectral Function has a small effect at our current POT.
- The different energy distribution from the Nieves 1p1h model adds a significant bias in Δm_{32}^2 , and motivates an extra detector uncertainty.
- The differences between the Martini and Nieves 2p2h models are mostly handled by the addition of the $\bar{\nu}$ 2p2h uncertainty.
- The effective RPA model has a negligible effect on the oscillation fits.
- Some of the effects which are small now will become significantly larger at T2K full exposures.
 - Model dependent effects are going to get important before we finish the initial T2K running goal.
- All of these fake data studies will be included in detail in our upcoming long oscillation paper.
 - Look out for it!

Conclusions

- T2K has a powerful near detector that allows us to constrain our flux and interaction systematic uncertainties for oscillation fits.
 - Flux and interaction systematics result in a 5% event rate uncertainty on our ν_e and $\overline{\nu_e}$ samples at Super-K.
 - Inclusion of Super-K detector uncertainties leads to a 6% total event rate uncertainty.
- Our default event rate prediction is low for CC0 π events and high for CC1 π events.
 - The ND280 data fit leads us to increase neutrino flux but decrease CC1 π cross-sections.
 - and also increase our predicted 2p2h contribution by around 50% for neutrinos.
- Fake-data has informed our parameterisation, and shown that it is sufficient for the current T2K exposures.
 - But fake-data fits at our full exposure suggest that these effects will become more important.
 - So the ongoing work of the community to help improve our models and their uncertainties is greatly appreciated!

Section 1

Backup