Impact of cross section uncertainties on NOvA oscillation analyses

on behalf of the NOvA collaboration

Jeremy Wolcott Tufts University

June 25, 2017 NuInt 2017 (Toronto, Canada)

A broad neutrino physics program

• <u>Searching beyond the</u> <u>Standard Model</u>: Are there more than 3 neutrino states? Can we observe dark matter via decays to leptons? Do magnetic monopoles exist?

. . .

A broad neutrino physics program

• <u>Searching beyond the</u> <u>Standard Model</u>: Are there more than 3 neutrino states? Can we observe dark matter via decays to leptons? Do magnetic monopoles exist?

- Cross section measurements:
- J. Paley's talk, Mon. June 26 H. Duyang's talk, Tues. June 27

June 25, 2017

. . .

NuMI neutrino beam discussed in detail by L. Aliaga on Mon. June 26

June 25, 2017

J. Wolcott

Particle 3

How cross sections enter the story: energy reconstruction

- $P(\nu_{\alpha} \rightarrow \nu_{\beta})$ depends on E_{true} , but detectors measure E_{reco}
- Detectors/reconstruction have different sensitivities to different processes, which have different E_{true} ↔ E_{reco}

How cross sections enter the story: energy reconstruction

- $P(\nu_{\alpha} \rightarrow \nu_{\beta})$ depends on E_{true} , but detectors measure E_{reco}
- Detectors/reconstruction have different sensitivities to different processes, which have different E_{true} ↔ E_{reco}

How cross sections enter the story: energy reconstruction

- $P(\nu_{\alpha} \rightarrow \nu_{\beta})$ depends on E_{true} , but detectors measure E_{reco}
- Detectors/reconstruction have different sensitivities to different processes, which have different E_{true} ↔ E_{reco}

Near detectors

The event rate measured at the far detector is a complicated function of many things, not just oscillation probability:

$$N(E_{v}^{rec}) = \Phi(E_{v}^{true}) \times P_{osc}(E_{v}^{true}) \times \sigma(E_{v}^{true}, A) \times R(E_{v}^{true}) \times \epsilon(...)$$

Both <u>low statistics</u> at the FD (typically 10s-100s of events) and <u>systematics on the other parameters</u> can blur the oscillation probability effect.

Near detectors

The event rate measured at the far detector is a complicated function of many things, not just oscillation probability:

$$N(E_{v}^{rec}) = \Phi(E_{v}^{true}) \times P_{osc}(E_{v}^{true}) \times \sigma(E_{v}^{true}, A) \times R(E_{v}^{true}) \times \epsilon(...)$$

Both <u>low statistics</u> at the FD (typically 10s-100s of events) and <u>systematics on the other parameters</u> can blur the oscillation probability effect.

A Near Detector helps in two ways:

- Much better stats
- No oscillations (fewer DoFs)

$$N^{ND}(E_{\nu}^{rec}) = \Phi(E_{\nu}^{true}) \times \sigma(E_{\nu}^{true}, A) \times R(E_{\nu}^{true}) \times \epsilon(...)$$

Near detectors

The event rate measured at the far detector is a complicated function of many things, not just oscillation probability:

$$N(E_{v}^{rec}) = \Phi(E_{v}^{true}) \times P_{osc}(E_{v}^{true}) \times \sigma(E_{v}^{true}, A) \times R(E_{v}^{true}) \times \epsilon(...)$$
Both low statistics at the FD (typically 10s-100s of events)
and systematics on the other parameters
can blur the oscillation probability effect.
A Near Detector helps in two ways:
• Much better stats
• No oscillations (fewer DoFs)
$$N^{ND}(E_{v}^{rec}) = \Phi(E_{v}^{true}) \times \sigma(E_{v}^{true}, A) \times R(E_{v}^{true}) \times \epsilon(...)$$

Using the ND

Use resulting fitted central values and systematic covariances as input to FD (oscillation) fit [see S. Dennis's talk, T2K, next!]

<u>Strategy #2</u> Spectrum correction (MINOS, NOvA)

Reweight true energy distribution to obtain data-MC agreement at ND and extrapolate to FD using simulated F/N ratio; repeat for each systematic to determine constrained effect of systs at FD

Using the ND

<u>Strategy #1</u> Fit ND (T2K) <u>Strategy #2</u> Spectrum correction (MINOS, NOvA)

Strengths

- <u>Completely general</u> (works for any expt design)
- Builds on <u>physical understanding of</u> <u>underlying processes</u> (models)

- Efficiently cancel strongly correlated uncertainties between ND & FD
 - Can <u>account for discrepancies without</u> <u>fully formed model</u>

Weaknesses

Relies on <u>exhaustiveness of</u>

••• <u>models and associated parameters</u> ("best fit" not guaranteed to fit data) Very little constraint power if uncertainties affect detectors in different ways

Evaluating cross section uncertainties

Depend heavily on GENIE's reweight system...

Primary process uncertainties

- **QE**: M_A , Vector FF, Pauli supp...
- **RES**: M_A , M_V , Δ decay isotropy...
- DIS: Bodek-Yang parameters, transition region ("non-resonant background" scale), ...
 COH: Rein-Sehgal M_A, R₀, ...

Final-state model (hA) uncertainties

Nucleon, pion elastic, inelastic, chg ex., abs. reaction probabilities

Hadron mean free paths

(~50 reweight knobs in all)

... with special studies for nonreweightable knobs...

Hadronization uncertainties

...and a few custom knobs where GENIE doesn't offer any:

MEC model for 2p2h

RPA (based on València treatment; histograms from R. Gran)

June 25, 2017

Fig. 1 This task combines a worked example with a self-explanation prompt.

ν_{μ} disappearance

Goal: measure the location and strength of the "oscillation dip" relative to no-oscillations prediction

ν_{μ} disappearance: selection

v_{μ} disappearance: energy reconstruction

Calibrate muon track length to true E_{μ} , then remaining visible energy to (true E_{ν} – reco E_{μ}).

Calorimetric (not kinematic) energy reconstruction

v_{μ} disappearance: energy reconstruction

v_{μ} disappearance: energy reconstruction

J. Wolcott / Tufts U. / NuInt 2017

To produce a data-driven prediction at FD, based on ND:

True energy distribution is corrected so that reconstructed data & MC agree at the ND...

To produce a data-driven prediction at FD, based on ND:

True energy distribution is corrected so that reconstructed data & MC agree at the ND... ...modified true energy distribution is propagated through predicted geometric beam dispersion & acceptance ratio, oscillations...

To produce a data-driven prediction at FD, based on ND:

True energy distribution is corrected so that reconstructed data & MC agree at the ND... ...modified true energy distribution is propagated through predicted geometric beam dispersion & acceptance ratio, oscillations...

... and "extrapolated" reconstructed energy distribution computed to compare to data

To produce a data-driven prediction at FD, based on ND:

corrected so that reconstructed data & MC agree at the ND... ..modified true energy distribution is propagated through predicted geometric beam dispersion & acceptance ratio, oscillations... ... and "extrapolated" reconstructed energy distribution computed to compare to data

Illustrating XS systematics: MEC

Examine this procedure through the lens of reaction that's historically gotten a lot of press at NuInt:

2p2h via Meson Exchange Currents (CV: GENIE 'Empirical MEC' w/ ND tuning)

Published analyses use 50% normalization uncertainty (more sophisticated treatment in future)

Illustrating XS systematics: MEC

A.U. (Area normalized)

Examine this procedure through the lens of reaction that's historically gotten a lot of press at NuInt:

2p2h via Meson Exchange Currents (CV: GENIE 'Empirical MEC' w/ ND tuning)

Published analyses use 50% normalization uncertainty (more sophisticated treatment in future)

Energy resolution is a function of reaction type.

If "extrapolation" really works, even changing the composition (adding/subtracting MEC) should have minimal effect at FD.

NOvA Simulation

J. Wolcott / Tufts U. / NuInt 2017

To examine the effect of extrapolation:

Replace "ND Data" with "ND prediction under systematic shift"

To examine the effect of extrapolation:

Transport "corrected" prediction through extrapolation process

To examine the effect of extrapolation:

extrapolation significantly reduces sensitivity to XS systs

J. Wolcott / Tufts U. / NuInt 2017

Other important XS uncertainties

Extrapolation: all XS uncertainties

J. Wolcott / Tufts U. / NuInt 2017

Extrapolation: all uncertainties

the far detector prediction

Effect on analysis

systematic uncertainties due to detector design & power of extrapolation.

Strength of NOvA results driven by understanding of detector response, not cross sections. (More important for Δm², but same story holds.) 2L 0.3

0.4

0.5

 $\sin^2\theta_{23}$

0.7

0.6

Fig. 1 This task combines a worked example with a self-explanation prompt.

6 - k = 3

ν_e appearance

$$P(\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(A-1)\Delta}{(A-1^{2})}$$

$$\stackrel{(+)}{-} 2 \cos \theta_{13} \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{A-1} \sin \Delta$$

$$+ 2 \cos \theta_{13} \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{A-1} \cos \Delta$$

$$Where: \alpha = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \Delta = \Delta m_{31}^{2} \frac{L}{4E} \quad A = \stackrel{(-)}{+} G_{f} N_{e} \frac{L}{\sqrt{2}\Delta}$$

Besides the dependence on the mixing parameters, we learn about the mass ordering (via α) and δ_{CP}

v_{e} appearance: selection & reconstruction

Hadronic Raw Energy [GeV]

0 2

ν_{e} appearance

Added challenges:

- Significant backgrounds which oscillate differently
 - Beam v_e oscillate very little over this L/E
 - v_{μ} almost entirely disappear
 - NC doesn't change due to oscillations (assume no steriles)

Need to disentangle ("decompose") before applying Far/Near makes any sense.

- No signal at ND
 - And difference v_{μ} ND vs.
 - v_{e} FD acceptance

v_e appearance

June 25, 2017

J. WOICOTT / Tufts U. / NuInt 2017

ν_{e} appearance

Cross section uncertainties: future

- Continue working on updating XS uncertainty budget in light of recent developments
 - Introduction of MEC & assoc. errors affects QE uncertainties:
 - Reduce GENIE M_A^{QE} towards bubble chamber measurements (~5%, instead of ~25%)
 - Or, better, consider switching to z-expansion uncertainties since dipole is poor *ansatz*
 - RPA correction to GENIE QE: following Valencia treatment via R. Gran (arXiv:1705.02932)
 - Following world resonance-dominated pion production measurements closely (M_A^{RES}, etc.)
 - Transition-region soft DIS since ANL-BNL resolution & retuning (Eur. J. Phys C76, 474)
 - ν_e XS relative to ν_μ (Phys. Rev. D86, 053003)
 - Further inspection of non-reweightable GENIE uncertainties (hadronization, etc.)
- In the process of binding alternate generators (NEUT, GiBUU) to NOvA software framework to study impact of models not in GENIE
- NOvA XS measurements will enter as constraints once they are ready!

Cross section uncertainties: future (MEC)

Want **robust uncertainties** to cover (potential) differences from Empirical MEC:

Summary

- NOvA relies on strong internal constraints on cross section uncertainties for its rich physics program
 - Calorimeter design minimizes a priori impact
 - Dual, functionally-identical detectors enable major cancellation of residual errors in oscillation analyses
- Comprehensive program underway to ensure all relevant cross section issues are considered
- Current antineutrino run will enable even more interesting oscillation and cross section measurements
- Expect **updated oscillation results** (with updated cross section uncertainties) later this year!

Thank you on behalf of NOvA!

Overflow

Beam spectral shape

Fixing the energy scale

- Near Detector
 - cosmic µ dE/dx [~vertical]
 - beam μ dE/dx [~horizontal]
 - Michel e- spectrum
 - $-\pi^0$ mass
 - hadronic shower *E*-per-hit
- Far Detector
 - cosmic µ dE/dx [~vertical]
 - beam μ dE/dx [~horizontal]
 - Michel e- spectrum
- All agree to 5%

v_{μ} disappearance: energy resolution

v_{μ} disappearance: energy resolution

v_{μ} disappearance: energy resolution

$\nu_{\!_{\mu}}$ disappearance: energy resolution

v_e appearance: ND/FD kinematic compatibility

v_e appearance: selection

Event selection via a "Convolutional Neural Network":

energy deposition patterns treated as images, algorithm extracts representative abstract features by applying learned filters

v_{e} appearance: constraining beam v_{e} bknd

v_{e} appearance: constraining v_{u} CC/NC ratio

Future sensitivities

Lower Octant

Upper Octant

Cosmic ray rejection

Handling MEC

We make comparisons where we use q₀ behavior of various models available to us (by reweighting Empirical MEC) and then fit true |**q**| shape (~normalization constraint) to get best fit in reconstructed |**q**| against ND data

Handling MEC

NOvA Preliminary $\times 10^3$ GENIE QE q shape 150 **NOvA Preliminary** GENIE RES q shape GENIE 'Empirical MEC' Events 100 Valencia q shape 250 × 10³ NOvA ND data GENIE QE q, shape 50 GENIE RES q shape GENIE 'Empirical MEC' 200 F Valencia q₀ shape NOvA ND data Events 150F 1.4 1.2 MC / data 100 50F 0.8 Λ 0.6 1.2 0.4 0.6 Visible E_{had} (GeV) 0.2 0.8 0 1.1E **NOvA Preliminary** MC / data 200 ×10³ GENIE QE q_shape GENIE RES q_ shape 0.9 150 GENIE 'Empirical MEC' Valencia q shape Events NOvA ND data 100 0.8 3 0 2 50 Reco $\overline{E_v}$ (GeV) 1.2E 1.1E MC / data 0.9E 0.8

J. Wolcott / Tufts U. / N

0.5

0

1.5

Reco E_{...} (GeV)

2

2.5

3

Effect of new MEC uncertainties $(v_{\mu} \text{ disappearance})$

