Impact of cross section uncertainties on NOvA oscillation analyses

on behalf of the NOvA collaboration

Jeremy Wolcott Tufts University

June 25, 2017 NuInt 2017 (Toronto, Canada)

A broad neutrino physics program

• Searching beyond the Standard Model:

Are there more than 3 neutrino states? Can we observe dark matter via decays to leptons? Do magnetic monopoles exist?

...

A broad neutrino physics program

• Searching beyond the Standard Model:

Are there more than 3 neutrino states? Can we observe dark matter via decays to leptons? Do magnetic monopoles exist?

- Cross section measurements:
- J. Paley's talk, Mon. June 26 H. Duyang's talk, Tues. June 27

...

NuMI neutrino beam discussed in detail by L. Aliaga on Mon. June 26

J. Wolcott **Figure 25, 2017** Particle 3

How cross sections enter the story: energy reconstruction

- P(ν $_{\alpha}$ →ν $_{\beta}$) depends on E $_{\text{true}}$, but detectors measure E $_{\text{reco}}$
- Detectors/reconstruction have different sensitivities to different processes, which have different $E_{true} \leftrightarrow E_{reco}$

How cross sections enter the story: energy reconstruction

- P(ν $_{\alpha}$ →ν $_{\beta}$) depends on E $_{\text{true}}$, but detectors measure E $_{\text{reco}}$
- Detectors/reconstruction have different sensitivities to different processes, which have different $E_{true} \leftrightarrow E_{reco}$

How cross sections enter the story: energy reconstruction

- P(ν $_{\alpha}$ →ν $_{\beta}$) depends on E $_{\text{true}}$, but detectors measure E $_{\text{reco}}$
- Detectors/reconstruction have different sensitivities to different processes, which have different $E_{true} \leftrightarrow E_{reco}$

Near detectors

The event rate measured at the far detector is a complicated function of many things, not just oscillation probability:

$$
N\!\left(\,E_{\,\mathrm{v}}^{\,\mathrm{rec}}\right)\!=\!\Phi\!\left(\,E_{\,\mathrm{v}}^{\,\mathrm{true}}\right)\!\!\times\! P_{\,\mathrm{osc}}\!\left(\,E_{\,\mathrm{v}}^{\,\mathrm{true}}\right)\!\!\times\!\sigma\!\left(\,E_{\,\mathrm{v}}^{\,\mathrm{true}}\,,A\right)\!\!\times\! R\!\left(\,E_{\,\mathrm{v}}^{\,\mathrm{true}}\right)\!\!\times\!\epsilon\left(\,\ldots\right)
$$

Both low statistics at the FD (typically 10s-100s of events) and systematics on the other parameters can blur the oscillation probability effect.

Near detectors

The event rate measured at the far detector is a complicated function of many things, not just oscillation probability:

$$
N\!\left(\,E_{\,\mathrm{v}}^{\,\mathrm{rec}}\right)\!=\!\Phi\!\left(\,E_{\,\mathrm{v}}^{\,\mathrm{true}}\right)\!\times\! \mathbf{P}_{\,\mathrm{osc}}\!\left(\,E_{\,\mathrm{v}}^{\,\mathrm{true}}\right)\!\times\!\sigma\!\left(\,E_{\,\mathrm{v}}^{\,\mathrm{true}}\,,A\right)\!\times\! \mathbf{R}\!\left(\,E_{\,\mathrm{v}}^{\,\mathrm{true}}\right)\!\times\!\epsilon\left(\,\ldots\right)
$$

Both low statistics at the FD (typically 10s-100s of events) and systematics on the other parameters can blur the oscillation probability effect.

A **Near Detector** helps in two ways:

- Much better stats
- No oscillations (fewer DoFs)

$$
N^{ND}\big(E_{\mathbf{v}}^{rec}\big) {=} \Phi\big(E_{\mathbf{v}}^{true}\big) { \times} \sigma\big(E_{\mathbf{v}}^{true},A\big) { \times} R\big(E_{\mathbf{v}}^{true}\big) { \times} \epsilon \big(... \big)
$$

Near detectors

The event rate measured at the far detector is a complicated function of many things, not just oscillation probability:

$$
N(E_v^{rec}) = \Phi(E_v^{true}) \times P_{osc}(E_v^{true}) \times \overbrace{\sigma(E_v^{true}, A) \times R(E_v^{true}) \times \epsilon (...)}_{\text{Both low statistics at the FD (typically 10s-100s of events)}
$$
\nBoth low statistics at the FD (typically 10s-100s of events) and systematics on the other parameters can blur the oscillation probability effect.
\nA Near Detection helps in two ways:
\n• Much better stats
\n• No oscillations (fewer DoFs)
\n
$$
N^{ND}(E_v^{rec}) = \Phi(E_v^{true}) \times \overbrace{\sigma(E_v^{true}, A) \times R(E_v^{true}) \times \epsilon (...)}_{\text{true}})
$$

Using the ND

Use resulting fitted central values and systematic covariances as input to FD (oscillation) fit [see S. Dennis's talk, T2K, next!]

Strategy #2 Spectrum correction (MINOS, NOvA)

Reweight true energy distribution to obtain data-MC agreement at ND and extrapolate to FD using simulated F/N ratio; repeat for each systematic to determine constrained effect of systs at FD

Using the ND

Strategy #2 Spectrum correction (MINOS, NOvA)

Strengths

✔

✔

- Completely general (works for any expt design)
- Builds on physical understanding of underlying processes (models)
- Efficiently *cancel* strongly correlated uncertainties between ND & FD
	- Can account for discrepancies without fully formed model

Weaknesses

Relies on exhaustiveness of

models and associated parameters **...** models and associated parameters ("best fit" not guaranteed to fit data)

Very little constraint power if uncertainties affect detectors in different ways

✔

✔

Evaluating cross section uncertainties

Depend heavily on GENIE's reweight system...

Primary process uncertainties

- **QE**: M_A, Vector FF, Pauli supp...
- **RES**: M_A , M_V , Δ decay isotropy...
- **DIS**: Bodek-Yang parameters, transition region ("nonresonant background" scale), … **COH**: Rein-Sehgal M_A, R₀, ...

Final-state model (hA) uncertainties

Nucleon, pion elastic, inelastic, chg ex., abs. reaction probabilities

Hadron mean free paths

(~50 reweight knobs in all)

… with special studies for nonreweightable knobs...

Hadronization uncertainties

…and a few custom knobs where GENIE doesn't offer any:

J. Wolcott / Tufts U. / NuInt 2017 17 MEC model for **2p2h RPA** (based on València treatment; histograms from R. Gran)

 $-6 - k = 3$

ν μ disappearance

Goal: measure the location and strength of the "oscillation dip" relative to no-oscillations prediction

ν μ disappearance: selection

ν μ disappearance: energy reconstruction

Calibrate muon track length to true E_{μ} , then remaining visible energy to (true E_{v} – reco $\mathsf{E}_{\mathsf{\mu}}$).

Calorimetric (not kinematic) energy reconstruction

E

ν

ν μ disappearance: energy reconstruction

ν μ disappearance: energy reconstruction

J. Wolcott / Tufts U. / NuInt 2017 23

To produce a data-driven prediction at FD, based on ND:

True energy distribution is corrected so that reconstructed data & MC agree at the ND...

To produce a data-driven prediction at FD, based on ND:

True energy distribution is corrected so that reconstructed data & MC agree at the ND...

…modified true energy distribution is propagated through predicted geometric beam dispersion & acceptance ratio, oscillations...

To produce a data-driven prediction at FD, based on ND:

True energy distribution is corrected so that reconstructed data & MC agree at the ND...

…modified true energy distribution is propagated through predicted geometric beam dispersion & acceptance ratio, oscillations...

… and "extrapolated" reconstructed energy distribution computed to compare to data

To produce a data-driven prediction at FD, based on ND:

corrected so that reconstructed data & MC agree at the ND...

is propagated through predicted geometric beam dispersion & acceptance ratio, oscillations...

… and "extrapolated" reconstructed energy distribution computed to compare to data

Illustrating XS systematics: MEC

Examine this procedure through the lens of reaction that's historically gotten a lot of press at NuInt:

2p2h via Meson Exchange Currents (CV: GENIE 'Empirical MEC' w/ ND tuning)

Published analyses use 50% normalization uncertainty (more sophisticated treatment in future)

Illustrating XS systematics: MEC

Examine this procedure through the lens of reaction that's historically A.U. (Area normalized) gotten a lot of press at NuInt:

2p2h via Meson Exchange Currents (CV: GENIE 'Empirical MEC' w/ ND tuning)

Published analyses use 50% normalization uncertainty (more sophisticated treatment in future)

Energy resolution is a function of reaction type.

If "extrapolation" really works, even changing the composition (adding/subtracting MEC) should have minimal effect at FD.

To examine the effect of extrapolation:

Replace "ND Data" with "ND prediction 1) Replace ive bala will ive produce the control (1)

To examine the effect of extrapolation:

Transport "corrected" prediction through ^② extrapolation process

To examine the effect of extrapolation:

J. Wolcott / Tufts U. / NuInt 2017 35

Other important XS uncertainties

Extrapolation: all XS uncertainties

Extrapolation: all uncertainties

the far detector prediction

Effect on analysis

systematic uncertainties due to detector design & power of extrapolation.

Strength of NOvA results driven by understanding of detector response, not cross sections. (More important for Δm^2 , but same story holds.) $6\frac{1}{3}$

 0.4

 0.5

 $\sin^2\theta_{23}$

 0.7

 0.6

 $-6 - k = 3$

$$
P\left(\begin{array}{c}\n\mu & -\mu \\
\mu & \mu\n\end{array}\right) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2 (A-1)\Delta}{(A-1^2)}
$$
\n
$$
\begin{array}{c}\n\mu + \sqrt{2} \cos^2 \theta_{13} \sin \theta_{13} \sin \theta_{13} \sin \theta_{12} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta \sin(A-1)\Delta}{A-1} \sin \Delta \\
+ 2 \cos^2 \theta_{13} \cos \theta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta \sin(A-1)\Delta}{A-1} \cos \Delta\n\end{array}
$$
\n
$$
\text{Where: } \overline{\left(\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2}\right)} \Delta = \Delta m_{31}^2 \frac{L}{4E} \quad A = \frac{(-)}{2} G_f N_e \frac{L}{\sqrt{2}\Delta}
$$

Besides the dependence on the mixing parameters, we learn about the mass ordering (via α) and δ_{CP}

ν e appearance: selection & reconstruction

 0.5 ⁵ 1.5
Electron Shower Raw Energy [GeV]

Hadronic Raw Energy [GeV]
Pope Control Ce

Added challenges:

- **Significant backgrounds which oscillate differently**
	- **Beam v** oscillate very little over this L/E
	- **ν**_μ almost entirely disappear
	- **NC** doesn't change due to oscillations (assume no steriles)

Need to disentangle ("decompose") before applying Far/Near makes any sense.

- **No signal at ND**
	- And difference v_{μ} ND vs.
		- ν_e FD acceptance

Cross section uncertainties: future

- Continue working on updating XS uncertainty budget in light of recent developments
	- Introduction of MEC & assoc. errors affects QE uncertainties:
		- Reduce GENIE M_AQE towards bubble chamber measurements (~5%, instead of ~25%)
		- Or, better, consider switching to z-expansion uncertainties since dipole is poor *ansatz*
	- RPA correction to GENIE QE: following Valencia treatment via R. Gran ([arXiv:1705.02932](https://arxiv.org/abs/1705.02932))
	- Following world resonance-dominated pion production measurements closely (M_ARES, etc.)
	- Transition-region soft DIS since ANL-BNL resolution & retuning ([Eur. J. Phys C76, 474](https://inspirehep.net/record/1414604))
	- v_e XS relative to v_μ ([Phys. Rev. D86, 053003](http://inspirehep.net/record/1120279))
	- Further inspection of non-reweightable GENIE uncertainties (hadronization, etc.)
- In the process of binding *alternate generators* (NEUT, GiBUU) to NOvA software framework to study impact of models not in GENIE
- NOvA XS measurements will enter as constraints once they are ready!

Cross section uncertainties: future (MEC)

Want **robust uncertainties** to cover (potential) differences from Empirical MEC:

Summary

- NOvA relies on strong internal constraints on cross section uncertainties for its rich physics program
	- Calorimeter design minimizes *a priori* impact
	- Dual, functionally-identical detectors enable major cancellation of residual errors in oscillation analyses
- Comprehensive program underway to ensure all **relevant cross section issues are considered**
- **Current antineutrino run** will enable even more interesting oscillation and cross section measurements
- Expect **updated oscillation results** (with updated cross section uncertainties) later this year!

Thank you on behalf of NOvA!

Overflow

Beam spectral shape

Fixing the energy scale

- **Near Detector**
	- cosmic μ dE/dx[~vertical]
	- beam μ dE/dx [~horizontal]
	- Michel e spectrum
	- $\pi^{\rm o}$ mass
	- hadronic shower *E*-per-hit
- **Far Detector**
	- cosmic μ dE/dx [~vertical]
	- beam μ dE/dx [~horizontal]
	- Michel e spectrum
- All agree to 5%

ν μ disappearance: energy resolution

ν e appearance: ND/FD kinematic compatibility

ν e appearance: selection

Event selection via a "Convolutional Neural Network":

energy deposition patterns treated as images, algorithm extracts representative abstract features by applying learned filters

ν e appearance: constraining beam νε bknd

ν e appearance: constraining ν_μ CC/NC ratio

Future sensitivities

Lower **Octant**

Upper **Octant**

Cosmic ray rejection

NOvA Preliminary

Handling MEC

We make comparisons where we use $\bm{{\mathsf{q}}}_{_{\bm{0}}}$ behavior of various models available to us (by reweighting Empirical MEC) and then fit true |**q**| shape (~normalization constraint) to get best fit in reconstructed |**q**| against ND data

Handling MEC

NOvA Preliminary

 \times 10³ GENIE QE q shape 150 **NOvA Preliminary** GENIE RES q shape **GENIE 'Empirical MEC'** Events 10 Valencia q shape $250\frac{\times 10^3}{4}$ **NOvA ND data** GENIE QE q shape 50 GENIE RES q shape
GENIE 'Empirical MEC' $200 \square$ Valencia q[']shape
NOvA ND data Events 150F 1.4 MC / data 1.2 100 $50F$ 0.8 \cap 0.6 1.2 $\frac{1}{2}$ $\overline{0.2}$ $\frac{0.4}{\text{Visible E}_{\text{had}}}$ (GeV) 0.8 1.1F **NOvA Preliminary** MC / data $200\frac{\times 10^3}{\sqrt{2}}$ GENIE QE q shape GENIE RES[°] shape $0.9E$ 150 **GENIE 'Empirical MEC'** Valencia q shape Events 100 NOvA ND data $0.8\Box$ 3 $\overline{0}$ $\mathbf{2}$ 50 Reco E_v (GeV) 1.2 1.1_E MC / data 0.9 0.8 June 25, 2017 J. Wolcott / Tufts U. / Nune 25, 2017 J. S. 2017

Effect of new MEC uncertainties (ν_μ disappearance)

