Quasi-elastic (inclusive) neutrino scattering from nuclei

J. Carlson, LANL

S. Pastore A. Lovato D. Lonardoni S. C. Pieper R. Schiavilla R. B. Wiringa

Why study neutrino-nucleus scattering?

DUNE, Minerva, T2K, Nova, MicroBooNE.

see session later today

mass hierarchy CP violation in neutrinos non-standard interactions

1.1.1

CC 0π on ¹²C

Improved agreement including 2p-2h contributions and enhancement in V, A, & A-V interference contributions

Similar contributions added in SUSA and improve agreement with data

More exclusive data?

Martini and Nieves RPA compared to T2K, Abe (T2K collab) 2016

Nuclear Dependence

Minerva results for different nuclei compared to generators

Quasi-elastic scattering: simplest picture Incoherent scattering from individual quasi-free nucleons

Scaling with momentum transfer: 'y'-scaling incoherent sum over scattering from single nucleons

 $\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \left(\frac{d\sigma}{d\Omega_{e'}}\right)_M \left|\frac{Q^4}{|\mathbf{q}|^4}R_L(|\mathbf{q}|,\omega)\right|$

+ $\left(\frac{1}{2}\frac{Q^2}{|\mathbf{q}|^2} + \tan^2\frac{\theta}{2}\right)R_T(|\mathbf{q}|,\omega)$

PWIA often good for $q >> k_F$; used in many fields (neutron scattering, ...)

Inclusive Scattering

$$\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \left(\frac{d\sigma}{d\Omega_{e'}}\right)_M \left[\frac{Q^4}{|\mathbf{q}|^4}R_L(|\mathbf{q}|,\omega) + \left(\frac{1}{2}\frac{Q^2}{|\mathbf{q}|^2} + \tan^2\frac{\theta}{2}\right)R_T(|\mathbf{q}|,\omega)\right]$$

electron scattering

 $R(q,\omega) = \sum_{f} \langle 0 | \mathbf{j}^{\dagger}(q) | f \rangle \langle f | \mathbf{j}(q) | 0 \rangle \, \delta(w - (E_f - E_0))$ $R(q,\omega) = \int dt \, \langle 0 | \mathbf{j}^{\dagger}(q) \, \exp[i(H - \omega)t] \, \mathbf{j}(q) | 0 \rangle$

Full Response: Ground State (Hamiltonian) Currents Propagation for final states

Impulse Approximation for quasi-elastic incoherent sum over single nucleons

requires momentum distributions and spectral functions

First required ingredient is scattering from an isolated nucleon

Electron and neutrino scattering from a single nucleon (or a set of independent nucleons) experiment theory (Lattice QCD)

Fairly well known for $q \leq 1$ GeV but radius puzzle near q=0

EM Nucleon Form Factors

Gonzalex-Jiminez, Caballero, Donnelly, Phys. Reports 2013

Nucleon Axial Form Factor

Deuterium analysis

 $r_A^2 = 0.46 (0.22) \text{ fm}^2$

Axial form factor from expt'l analysis

Meyer, Betancourt, Gran, Hill (2016)

Theory: Lattice QCD g_A can now be accurately calculated LANL, CalLAT, ... efforts underway for nucleon FF FNAL, LANL, ... can and should be validated in EM sector Quasi-elastic scattering from the nucleus

nuclear ingredients: interactions currents

experimental relations and scaling momentum dependence (1st kind) nuclear dependence (2nd kind)

Nuclear Calculations: Quantum Monte Carlo Short-time, high-energy approximations Tying to generators Nuclear interactions and currents

NN interactions

Ab initio calculations of Nuclei

FIG. 2 GFMC energies of light nuclear ground and excited states for the AV18 and AV18+IL7 Hamiltonians compared to experiment.

Light Nuclear Spectra

FRIB

Ab Initio Methods

Single-Nucleon Momentum Distributions

in PWIA: Response at different q

requires knowledge of momentum Distributions or Spectral Functions

Benhar, 1989

Impulse Approximation for quasi-elastic requires momentum distributions and/or spectral functions

One-body formulation gives equal longitudinal and transverse response (once single-nucleon form factors divided out)

¹²C transverse/longitudinal response

from Benhar, Day, Sick, RMP 2008 data Finn, et al 1984

scaling with momentum transfer better for individual responses overall scale quite different for Transverse, Longitudinal responses

Electron Scattering: Longitudinal and Transverse Response

Transverse (current) response:

$$R_T(q,\omega) = \sum_f \langle 0 | \mathbf{j}^{\dagger}(q) | f \rangle \langle f | \mathbf{j}(q) | 0 \rangle \, \delta(w - (E_f - E_0))$$

Longitudinal (charge) response:

$$R_{L}(q,\omega) = \sum_{f} \langle 0 | \rho^{\dagger}(q) | f \rangle \langle f | \rho(q) | 0 \rangle \, \delta(w - (E_{f} - E_{0}))$$

$$\mathbf{j} = \sum_{i} \mathbf{j}_{i} + \sum_{i < j} \mathbf{j}_{ij} + \dots$$

Two-nucleon currents required by current conservation Response depends upon all the excited states of the nucleus

Magnetic Moments

> EM Transitions

Sum Rules: Longitudinal Response

Quasielastic Scattering: Sum Rule for Vector Response

E Piasetzky et al. 2006 Phys. Rev. Lett. 97 162504. M Sargsian et al. 2005 Phys. Rev. C 71 044615. R Schiavilla et al. 2007 Phys. Rev. Lett. 98 132501. R Subedi et al. 2008 Science 320 1475.

 $\rho_{pN}(q,Q=0) \ (fm^3)$

Back to Back Nucleons (total $Q \sim 0$) np pairs dominate over nn and pp

Wiringa et al.; Carlson, et al, RMP 2015

Sum rules in ¹²C: neutral current scattering

Lovato, et. al PRL 2014 Single Nucleon currents (open symbols) versus Full currents (filled symbols)

Euclidean Response

$\tilde{R}(q,\tau) = \langle 0 | \mathbf{j}^{\dagger} \exp[-(\mathbf{H} - \mathbf{E_0} - \mathbf{q^2}/(\mathbf{2m}))\tau] \mathbf{j} | \mathbf{0} \rangle >$

Excellent agreement

w/EM (L&T)

response in A=4,12

Lovato, 2015, PRL 2016

- Exact given a model of interactions, currents
- `Thermal' statistical average
- Full final-state interactions
- `Local' Operator
- All contributions included elastic, low-lying states, quasi elastic, ...

Neutral Current Response of ¹²C

see Lovato talk on EM response

Lovato, et al, preliminary charged current underway

Reaching toward larger A

1.0

Scaling of the 2nd kind; fixed kinematics, different A

charge densities for different nuclei

analysis of Hofstadter data

slightly different k_F for different A

Larger A

Naive implementation of GFMC/AFDMC will suffer from sign problem Limited to quite short imaginary times

Exploring real-time propagation for short times: short-time approximation (STA) Employs factorization at two-nucleon level

Short Time - High Energy

$$\begin{split} R(q,\omega) &= \sum_{f} \langle 0|O^{\dagger}(q)|f\rangle \langle f|O(q)|0\rangle \delta(\omega - (E_{f} - E_{0})) \\ R(q, \omega) &= \int dt \ \langle \ 0 \mid j^{\dagger}(q) \ [\exp \left[i(H - \omega)t\right]\right] j(q) \mid 0 \ \rangle \\ \text{for short times (high energies):} \end{split}$$

 $P(t) = \exp[i(H - \omega)t] \rightarrow \prod_{i} \exp[i(H_{i}^{0} - \omega)t] S \prod_{i < j} \frac{\exp[-H_{ij}t]}{\exp[-H_{ij}^{0}t]}$ $H^{0}: \text{kinetic terms (one- and two-body)}$ gives PWIA in one-body limit factorize and keep terms at two-body level: $j_{1}^{\dagger}(i)P(t)j_{1}^{\dagger}(i), \ j_{1}^{\dagger}(j)P(t)j(i), \ j_{1}^{\dagger}(j)P(t)j_{2}^{\dagger}(ij) + hc$

write 2-nucleon state at vertex as interacting state w/ relative momentum p and total momentum P

in principle can be extended to higher order in time t

Short Time - High Energy (cont'd)

Advantages:

- Exact Sum Rules and Energy weighted sum rule
- Reduces to PWIA (I or 2-nucleon level) if you ignore FSI
- Two-nucleon level can in principle add relativity, pion prod, delta, ...
- `Local' operator : obeys scaling of 2nd kind for N=Z nuclei

Disadvantage:

- Knows nothing about low-energy physics (giant resonances,...)
- Requires evaluation for each current operator

Short Time - High Energy (cont'd)

Longitudinal Response

Pastore, et al, preliminary

Similar approach using n(k1,k2) by N. Rocco, A. Lovato

Transverse Response

Larger A can be treated w/ full ground state, plus two-nucleon off-diagonal operator

Putting into Generators:

Quantum at the vertex:

- full I and 2-body interference
- inclusion of full two-nucleon FSI
- sum of positive contributions

Can match to classical generator after the vertex

Need to include

- full weak currents (at 2N level)
- relativistic effects
- pion/delta production

. . . .

Conclusion and Outlook:

- Coherent picture of neutrino-nucleus scattering within reach
- Requires 2N correlations, currents, final states
- Can be useful beyond overall constraint on integrated response
- Many related applications: beta decay double beta decay astrophysical environments

. . .