
Phiala Shanahan 
MIT

Lattice QCD input for  
neutrino-nucleus interactions



Neutrinos produced as secondary decay products of hadrons from 
primary reactions of protons with nuclei

           neutrino energy must be reconstructed event-by-event from 
the final state of the reaction

Long-baseline neutrino experiments

production method of neutrinos as secondary decay products of hadrons, mostly pions and

kaons, that were produced in primary reactions of protons with nuclei. The neutrino energy

thus must be reconstructed event by event from the final state of the reaction, at both the

near and the far detectors.

Because all modern experiments use nuclear targets, such as H
2

O, CH
n

and 40Ar, the

energy reconstruction depends not only on the initial neutrino-nucleus interaction but also

on the final-state interactions (FSI) of all particles. The precision with which neutrino

oscillation properties can be extracted from such experiments then depends directly on the

description of the final state of the neutrino-nucleus interaction.

To get a sense for the accuracy needed for the energy reconstruction in oscillation exper-

iments, it is helpful to look at Fig. 1. The figure shows the expected oscillation signal for

DUNE as as a function of neutrino energy E
⌫

for some values of two neutrino properties: the

mixing angle ✓
13

and the CP-violating phase �
CP

. The three curves under the flux profile
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FIG. 1. Appearance probability of ⌫
e

in a ⌫
µ

beam at a distance of 1300 km, calculated for standard

oscillation mixing angles. The four colored curves illustrate the sensitivity of the expected signal to

the neutrino mixing angle ✓
13

and the CP-violating phase �
CP

. The black peak shows the expected

energy distribution for the µ-neutrino beam. From Reference [3].

can be distinguished from one another only if the neutrino energy can be determined to
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DUNE 
Need energy 
reconstruction to better 
than 100 MeV
 
Robust understanding of 
both nucleon and nuclear 
level amplitudes essential

Adams C, et al. arXiv:1307.7335 



For LBNEs neutrino energy 
distributions peak at 1-10 GeV

Challenging region: several 
processes contribute

Quasielastic lepton scattering

Inelastic continuum / shallow-
inelastic region
Resonances

Lattice QCD can provide direct 
non-perturbative QCD 
predictions of nucleon and 
nuclear matrix elements

Constraining 𝜈-nucleus interactions

Neutrino charged-current  
cross-section 22
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FIG. 9 Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figures 28, 11, and 12 with the inclusion of additional lower energy
CC inclusive data from N (Baker et al., 1982), ⇤ (Baranov et al., 1979), ⌅ (Ciampolillo et al., 1979), and ? (Nakajima et al.,
2011). Also shown are the various contributing processes that will be investigated in the remaining sections of this review.
These contributions include quasi-elastic scattering (dashed), resonance production (dot-dash), and deep inelastic scattering
(dotted). Example predictions for each are provided by the NUANCE generator (Casper, 2002). Note that the quasi-elastic
scattering data and predictions have been averaged over neutron and proton targets and hence have been divided by a factor
of two for the purposes of this plot.

J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307



Numerical first-principles approach

Euclidean space-time
•Finite lattice spacing
•Volume
•Boundary conditions

Finite but large number of d.o.f 

Lattice QCD

hOi = 1

Z

Z
DAD D O[A,  ]e�S[A,  ] hOi ' 1

N
conf

N
confX

i

O([U i])

Approximate the QCD path integral by Monte Carlo

with field configurations        distributed according toU i e�S[U ]

t ! i⌧

a

L3 ⇥ T ⇡ 323 ⇥ 64

x64

Calculate matrix elements directly from QCD



Predictions for new states with 
controlled uncertainties

Ground state hadron 
spectrum reproduced

p-n mass splitting reproduced

…

Lattice QCD works

29
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FIG. 15. Our results for the masses of charmed and/or bottom baryons, compared to the experimental results where available
[8, 10, 12]. The masses of baryons containing nb bottom quarks have been o↵set by �nb · (3000 MeV) to fit them into this plot.
Note that the uncertainties of our results for nearby states are highly correlated, and hyperfine splittings such as M⌦⇤

b
� M⌦b

can in fact be resolved with much smaller uncertainties than apparent from this figure (see Table XIX).

[Z Brown et al. PRD 2014]

Recently determined 
by LHCb experiment

Science 347:1452-1455,2015



For simple observables LQCD is  
precision science 

Combine with experiment  
to determine SM parameters

Verify CKM paradigm

SM predictions with reliable  
uncertainty quantification  

I.e., LQCD has had significant impact in 
flavour physics 
 
 

Lattice QCD for flavour physics
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Figure 1: Results of the UTA within the SM. The contours display the selected 68%

and 95% probability regions in the (⇢, ⌘)-plane. The 95% probability regions selected

by the single constraints are also shown.

Observable Input value SM prediction Pull
"K · 103 2.23± 0.01 1.96± 0.20 1.4

�ms[ps�1] 17.69± 0.08 18.0± 1.3 < 1
|Vcb| · 103 41.0± 1.0 42.3± 0.9 < 1
|Vub| · 103 3.82± 0.56 3.62± 0.14 < 1

Br(B ! ⌧⌫) · 104 1.67± 0.30 0.82± 0.08 2.7
sin 2� 0.68± 0.02 0.81± 0.05 2.4
↵ 91� ± 6� 88� ± 4� < 1
� 76� ± 11� 68� ± 3� < 1

Table 2: Comparison between input value and SM prediction for the UTA constraints.
The pull is also shown.

bag parameters fBs, fBs/fB, BBs and BBs/BB, which enter the theoretical predictions
of the B-physics observables �md, �md/�ms and Br(B ! ⌧⌫).

The main results of the UTA [22], performed by the UTfit collaboration assuming
the validity of the SM, are summarized in fig. 1, where the curves representing the
UTA constraints intersect in a single allowed region for (⇢, ⌘), proofing that the CKM
parameters are consistently overconstrained. In other words, the UTA has established
that the CKMmatrix is the dominant source of flavor mixing and CP violation and the
parameters ⇢ and ⌘ turn out to have the values ⇢ = 0.139±0.021 and ⌘ = 0.352±0.016.
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R. Van de Water Aspen 2012: Recent lattice-QCD results for heavy flavors

In this paper, we discuss three topics: the normalization and q2-dependence of the D → Klν
form factor; the decay constants of the D+ and Ds mesons; and the mass of the Bc meson. Each
of these lattice-QCD calculations was subsequently confirmed by experimental measurements,
satisfying a long-standing demand of experimental physicists [6]. The quantities discussed here
were ideal candidates: they are straightforward to compute; they test the controversial aspects
in complementary ways; and the first “good” experimental measurements were expected on the
same time scale. The success of the predictions is extremely encouraging. In particular, the
calculations for D mesons are, in lattice QCD, similar to those for B mesons, whose b quarks
are considered likely to exhibit new, non-Standard interactions.

2. Semileptonic D Decays
Semileptonic decays such as D → Klν proceed as follows. A quark (in this case, a charmed
quark) emits a virtual W boson, thereby turning into a quark of a different flavor (in this case,
a strange quark). The W immediately disintegrates into a lepton-neutrino (lν) pair. The rate
depends on q2, which is the invariant-mass-squared of lν. Some of the q2 dependence stems from
QCD through a function called a form factor (in this case, denoted f+(q2)). The momentum
transfer q2 falls in the range 0 ≤ q2 ≤ q2

max = (mD−mK)2. In lattice QCD, discretization effects
are smallest when the spatial momentum p of the kaon is small, which puts q2 close to q2

max.
Experiments usually measure the branching fraction and quote the normalization f+(0),

after making assumptions about the q2 dependence. While our results were still preliminary [7],
experimental results came out for the normalization of D → Klν [8] and D → πlν [9]. The
agreement with our final results [10] is excellent. For example, we find fD→K

+ (0) = 0.73(3)(7) [10]
while the BES Collaboration measures fD→K

+ (0) = 0.78(5) [8].
In principle, the shape of the form factors can be computed directly in lattice QCD. In

practice, we calculated at a few values of p and used a fit to the Ansatz of Bećirević-Kaidalov
(BK) [11] to fix the q2 dependence. It was important, therefore, to measure the q2 dependence
experimentally. In photoproduction of charm off fixed nuclear targets, the FOCUS Collaboration
was able to collect high enough statistics to trace out the q2 distribution of the decay [12].
This setup does not yield an absolutely normalized branching ratio, so one is left to compare
f+(q2)/f+(0).

In Fig. 1(a) we plot our result for f+(q2)/f+(0) vs. q2/m2
D∗

s
. The errors from f+(0) must

be propagated to non-zero q2, so for f+(q2)/f+(0) the errors grow with q2. Figure 1 shows 1-σ
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Figure 1. Form factor for D → Klν vs. q2/m2
D∗

s
: (a) shape f+(q2)/f+(0) compared with

FOCUS [12]; (b) shape and normalization f+(q2) compared with Belle [14].
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Successes of lattice QCD

Lattice-QCD calculations now reproduce experimental results for a wide variety of 
hadron properties and provide the only ab initio QCD calculation of others, e.g.:

Most accurate determination of strong coupling constant

Predictions of Bc meson mass, decay constants fD & fDs, and D→Klν form factor 

Determinations of the light u, d, and s quark masses

Demonstrate that lattice-QCD calculations are reliable with controlled systematic errors

[Fermilab Lattice & MILC, 

Phys.Rev.Lett 94:011601,2005]
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m
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HPQCD ’10
RBC/KEK/Nagoya ’10
RBC/UKQCD ’10
BMW ’10

[Laiho, Lunghi, RV,

Phys.Rev. D81 (2010) 034503

updates at www.latticeaverages.org]

[Bethke, Eur.Phys.J. C64 (2009)]
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Impact on neutrino program: 
a current challenge to LQCD



LQCD input for 𝜈-nucleus interactions

Directly access QCD single-nucleon form 
factors without nuclear corrections

Reliable calculations with fully-controlled 
uncertainties

Calculate matrix elements in light nuclei 
from first principles

        EFT to reach heavy nuclear targets 
relevant to experiment

First calculations of axial charge of light 
nuclei

1.

2.

� Quark-antiquark pairs
from the vacuum
xx

� Sea quarks
xx

� Non-valence quarks
xx

� Disconnected
quark-line
contributions



Constraining 𝜈-nucleus interactions

Neutrino charged-current  
cross-section
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FIG. 9 Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figures 28, 11, and 12 with the inclusion of additional lower energy
CC inclusive data from N (Baker et al., 1982), ⇤ (Baranov et al., 1979), ⌅ (Ciampolillo et al., 1979), and ? (Nakajima et al.,
2011). Also shown are the various contributing processes that will be investigated in the remaining sections of this review.
These contributions include quasi-elastic scattering (dashed), resonance production (dot-dash), and deep inelastic scattering
(dotted). Example predictions for each are provided by the NUANCE generator (Casper, 2002). Note that the quasi-elastic
scattering data and predictions have been averaged over neutron and proton targets and hence have been divided by a factor
of two for the purposes of this plot.

J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307

QE



Well-determined from electron scattering expts


can be related to        by pion pole dominance

Cross-section for quasi-elastic neutrino-nucleon scattering

Quasi-elastic scattering

  6 

When considering neutrino scattering from nucleons, an axial current comes into play.  The 

total nucleon current coupling to the charged weak leptonic current is an isovector one 

body nucleon current with both vector and axial‐vector components: 

. The full nucleon weak current had been written down by 

Llewellyn‐Smith (1) but for our purposes it suffices to write the axial current of the nucleon 

as 

jA
µ
(Q

2
) = u (p ') GA (Q

2
)γ µ

+
1

2M
GP (Q

2
)q

µ⎛
⎝⎜

⎞
⎠⎟
γ 5
u(p)          (4) 

where the induced pseudoscalar GP(Q
2
)=4mN

2
GA/(mπ

2
+Q

2
)

 
is determined by PCAC and the 

axial-vector form factor GA(Q
2
) is established from experiment. 

 

The weak leptonic current is 

                                                              
 

jµ
l
=ψ

l
−

l
+

(1 γ 5 )γ µψν
ν

             (5) 

The lepton‐nucleon coupling is the scalar product of the two currents.  The change in sign 

for the axial coupling arises from the opposite helicity of neutrinos and anti‐neutrinos 

leading to constructive interference between the transverse vector and axial vector 

amplitudes for neutrino cross sections and destructive interference for anti‐neutrinos.   

 

It follows that the differential cross section for neutrino QE scattering off free nucleons can 

be expressed in the form (1):  

 

 

dσ

dQ
2
=
Gf

2
M

2
cos

2θC

8πEν
2

A 
(s − u)

M
2
B +

(s − u)2

M
4

C
⎡

⎣
⎢

⎤

⎦
⎥    (6) 

GA

3

Figure 2. The percent change in the neutrino
cross section for a 1% change in the form factors.

cross sections from deuterium. We plan to study
the nuclear corrections, adopting models which
have been used in precision electron scattering
measurements from nuclei at SLAC and JLab.

4. Extraction of FA(q2)

A substantial fraction of the cross section
comes from the form factor FA(q2). Therefore,
we can extract FA(q2) from the differential cross
section. Figure 2 and 3 show the contribution
of FA(q2) to dσ/dQ2. Figure 2 shows the per-
cent change in the neutrino cross section for a 1%
change in the form factors. Figure 3 shows the
fractional contribution of the form factor deter-
mined by setting the form factor to zero and by
determining the fractional decrease in the differ-
ential cross section. Since some terms are prod-
ucts of different form factors, the sum of the
curves do not have be 1.

To extract FA, we write the equation for
dσ/dq2(q2, Eν) in terms of a quadratic function
of FA(q2).

a(q2, Eν)FA(q2)2 + b(q2, Eν)FA(q2)

+ c(q2, Eν) −
dσ

dq2
(q2, Eν) = 0

Figure 3. Fractional contribution of the form
factor determined by setting the form factor
to zero and by determining the fractional de-
crease in the differential cross section, 1 −
(dσ/dQ2(formfactor = 0))/(dσ/dQ2).

For each q2 bin, we integrate the above equation
over the q2 bin and the neutrino flux.
∫∫

dq2dEν{a(q2, Eν)FA(q2)2 + b(q2, Eν)FA(q2)

+c(q2, Eν) −
dσ

dq2
(q2, Eν)} = 0

The above equation can be written as a
quadratic equation in FA at the bin value q2

bin.

αFA(q2
bin)2 + βFA(q2

bin) + γ − ∆ − NData
Bin = 0

The terms of this equation are given below:

α =

∫∫

dq2dEνa(q2, Eν)

β =

∫∫

dq2dEνb(q2, Eν)

γ =

∫∫

dq2dEνc(q2, Eν)

F1,2

GP

  7 

 

where (‐)+ refers to (anti)neutrino scattering, (s ‐ u) = 4MEν ‐ Q2 ‐ m2, and m is the lepton 

mass. The factors A, B, and C are functions of the Q2‐dependent vector, axial‐vector, and 

pseudoscalar form factors:  

 

A =
(m

2
+Q

2
)

M
2

[(1+ τ )G
A

2 − (1− τ )F
1

2
+ τ (1− τ )F

2

2
+ 4τF

1
F
2

−
m
2

4M
2

F
1
+ F

2( )
2

+ G
A
+ 2G

P( )
2

−
Q
2

M
2
+ 4

⎛
⎝⎜

⎞
⎠⎟
G

P

2
⎛

⎝⎜
⎞

⎠⎟
⎤

⎦
⎥
⎥

B =
Q
2

M
2
G

A
(F
1
+ F

2
)

C =
1

4
(G

A

2
+ F

1

2
+ τF

2

2
)

    (7) 

 

and F1 and F2 are the aforementioned isovector Dirac and Pauli vector form factors. With 

the vector form factors determined from electron scattering and small contributions from 

the pseudoscalar form factor for νµ scattering, early studies of neutrino QE scattering 

focused on investigating the axial‐vector form factor of the nucleon. 

 

2.2 – Early Investigations of the Weak Hadronic Current 

Some of the earliest experimental investigations of neutrino QE scattering,  vµ + n→ µ−
+ p , 

were performed in the late 1960's using spark chambers (aluminum, iron) (2,3) and bubble 

chambers (propane, freon) (4) as neutrino detectors.   These early experiments provided 

the first neutrino QE scattering event samples from which initial determinations of the 

underlying nucleon form factors were made.   In the early 1970's, many experiments 

dominant contribution

largest uncertainty

GA

Budd, Bodek, Arrington
Nucl.Phys.Proc.Suppl. 139 (2005) 90-95 

N

ν
l

N



Traditionally assumed to have dipole form 
 

                    determined with high 
precision from nuclear beta decay

axial mass        must be determined 
experimentally 

Electromagnetic FFs show significant 
deviation from dipole parametrisation form

More general alternatives
Model-indep z-expansion

Direct LQCD results

Axial form factor

In this case the axial form factor’s shape is determined by only one parameter, the axial

mass M
A

. While Eq. 5 indeed fulfills the asymptotic requirement, in the experimentally

relevant region of low Q2 the form factor could have a di↵erent shape [16–19].

Nearly all analyses of neutrino QE data have used the dipole form factor. The axial mass

extracted usually shows large error bars because all the experiments with elementary targets

(p,D) were done approximately 35 years ago with relatively weak neutrino currents. The

world average for the extracted axial mass is 1.03 GeV; the value extracted from charged

pion electroproduction experiments, which are also sensitive to F
A

, is close [1]. Figure 2

illustrates the sensitivity of the total QE cross section as a function of neutrino energy to

the axial mass.
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FIG. 2. Charged-current quasi-elastic cross section for ⌫
µ

scattering o↵ neutrons. The experimental

error bars are clearly much larger than the uncertainties due to using di↵erent values for M
A

; the

large error bars also lead to a correspondingly large uncertainty in the shape. Data are from

References [20–22]. From Reference[11]

B. Pion Production

At energies above approximately 200 MeV the first inelastic excitations of the nucleon

connected with pion production become possible. Most of the nucleon resonances have spin

1/2 and 3/2. The transition currents to the spin-1/2 resonances have the same form as

given above for the nucleon. The hadronic transition currents to the 3/2-resonances, by

contrast, have a much more complicated structure. Among these at the lower energies pion

7

Total QE cross-section sensitive 
to the axial mass:

MA

BUT

Mosel, Ann. Rev. Nucl. Part. Sci. 66, 171 (2016)

  8 

employed simpler targets, such as deuterium (5), recognizing that they provided cleaner 

measurements less influenced by nuclear effects. The primary focus of these experiments 

was measuring free nucleon form factors. At the time, these form factors were recognized 

as an important ingredient in the analysis of neutral currents ( vµ + p→ vµ + p and 

vµ + p→ vµ + p ) so careful study of the charged‐current component of this reaction began. 

 

Equations [6‐7] were typically used to analyze the experimental data on deuterium, subject 

to minor effects of Fermi motion and Pauli blocking in deuterium.  The vector form factors 

could be determined from electron scattering, thus leaving the neutrino experiments to 

measure the axial‐vector form factor of the nucleon. Traditionally, the axial‐vector form 

factor is assumed to have a dipole form:  

GA (Q
2
) =

gA

1+Q
2
/MA

2( )             (8) 

dependent on two empirical parameters: the value of the axial‐vector form factor at Q2=0 

(gA=FA(0)=1.2671 determined with high precision from nuclear beta decay (6)) and an 

axial mass, MA which must be determined experimentally.  Values of MA ranging from 0.65 

to 1.09 GeV were obtained from fitting both the total rate of CCQE events and their 

measured Q2 dependence.   Refs. (7,8) provide an excellent review of these early 

experimental MA determinations.  By the end of this period, it was concluded that the 

neutrino QE cross section could be accurately and consistently described by V‐A theory 

assuming a dipole axial‐vector form factor with MA=1.026 ± 0.021 GeV (9).  These 

conclusions were largely driven by experimental measurements on deuterium, but less‐

precise data on other heavier targets also contributed (see Table 1).  More recently, this 

gA = 1.2671

Bhattacharya et al, Phys.Rev. D84 (2011) 073006
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FIG. 11. Results for GA(Q
2) (left) and Gp(Q

2) (right) for momentum Q2 = 0.2848 GeV2. The notation is as in Fig. 10.

FIG. 12. Results for Gu�d
A (Q2) (left) and Gu�d

p (Q2) (right) as a function of Q2 for three source-sink time separations, namely
ts = 0.94 fm (red filled circles), ts = 1.13 fm (blue crosses) and ts = 1.31 fm (green filled triangles). We also show results
extracted from the summation method (open brown diamonds) and two-state fit (open magenta pentagons). The experimental
value of gA is shown with the black asterisk. Results are slightly shifted to the right for clarity.

results for G

u�d

A

that calls for a further study of excited states and volume e↵ects on the lattice determination of
G

u�d

p

(Q2).
In order to compute the individual light quark axial form factors one needs, besides the isovector form factors, the

Alexandrou et al., arXiv:1705.03399

gA = GA(Q
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same as in Fig 8.
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FIG. 10. (Left) The data for GA(Q
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phenomenological estimates of the axial mass, MA = 1.026 GeV and with our best estimate MA = 1.39 GeV corresponding
to hrAi|dipole = 0.49(10) given in Eq. 24. The experimental data have been provided by Ulf Meissner [9]. (Right) A zoomed in
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for the four ensembles a12m310, a09m130, a06m220 and
a06m135. Including the O(a) improvement of the axial

current, the ratios in Eqs (29)–(32) become

RI
1

=
Q2

4M2

N

G̃I
P (Q

2)

GA(Q2)
, (34)

RI
2

=
2bm
2MN

GP (Q2)

GA(Q2)
, (35)

RI
3

=
Q2 +M2

⇡

4M2

N

G̃I
P (Q

2)

GA(Q2)
, (36)

RI
4

=
2bm2MN

M2

⇡

GP (Q2)

G̃I
P (Q

2)
, (37)

Gupta et al., arXiv:1705.06834

MiniBooNE MA 
=1.35(17) GeV 
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FIG. 12. Isovector and light isoscalar axial form factors Gu�d
A (Q2) (left) and Gu+d

A (Q2) (right), and z-expansion fits to them.
The lattice data and the inner error band for the fit show statistical uncertainties, whereas the outer error band for the fit
shows the quadrature sum of statistical and systematic uncertainties. In addition, for the light isoscalar axial form factor, the
corresponding form factors from the renormalized connected and disconnected diagrams are also shown.
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FIG. 13. Disconnected axial form factors. Left: strange form factor, both with the full renormalization matrix and after setting
the mixing with light quarks to zero. Right: strange and disconnected light-quark axial form factors, including z-expansion fits
to them. See the caption of Fig. 12.

uncertainties is clearly visible, particularly at low Q2: the data that are strongly correlated form clusters of nearby
points, but there are large fluctuations between di↵erent clusters. This e↵ect was previously seen in the disconnected
electromagnetic form factors computed using the same dataset [4]. Fits using the z expansion to the strange and
light disconnected form factors are shown in the right plot. From these fits we obtain gsA = �0.0240(21)(8)(2)(7)

and gl,discA = �0.0430(28)(46)(6)(8). The fit has the e↵ect of averaging over several uncorrelated clusters of data,
and produces a considerably smaller uncertainty than the value taken directly from the form factor at Q2 = 0.
The leading uncertainties are statistical and (for the light-quark case) excited-state e↵ects. The uncertainty due to
renormalization is dominated by uncertainty in the o↵-diagonal part of the renormalization matrix. We also obtain
the radii (r2A)s = 0.155(73)(57)(7)(2) fm2 and (r2A)l,disc = 0.248(57)(28)(18)(0) fm2. Within their uncertainties, all of
the squared axial radii are compatible with 0.2 fm2.

Green et al., Phys. Rev. D 95, 114502 (2017)
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corresponding form factors from the renormalized connected and disconnected diagrams are also shown.
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uncertainties is clearly visible, particularly at low Q2: the data that are strongly correlated form clusters of nearby
points, but there are large fluctuations between di↵erent clusters. This e↵ect was previously seen in the disconnected
electromagnetic form factors computed using the same dataset [4]. Fits using the z expansion to the strange and
light disconnected form factors are shown in the right plot. From these fits we obtain gsA = �0.0240(21)(8)(2)(7)

and gl,discA = �0.0430(28)(46)(6)(8). The fit has the e↵ect of averaging over several uncorrelated clusters of data,
and produces a considerably smaller uncertainty than the value taken directly from the form factor at Q2 = 0.
The leading uncertainties are statistical and (for the light-quark case) excited-state e↵ects. The uncertainty due to
renormalization is dominated by uncertainty in the o↵-diagonal part of the renormalization matrix. We also obtain
the radii (r2A)s = 0.155(73)(57)(7)(2) fm2 and (r2A)l,disc = 0.248(57)(28)(18)(0) fm2. Within their uncertainties, all of
the squared axial radii are compatible with 0.2 fm2.

Strange quark contributions determined separately and can 
be isolated
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FIG. 13. Our results for Gu�d
A (Q2) (left) and Gu�d

p (Q2) (right) using the plateau method for ts = 1.31 fm (filled blue squares).
In the left panel, the solid blue (orange) line shows the fit to our lattice QCD results extracted from the plateau at ts = 1.31 fm
(from the two-state fit) using Eq. (28). The experimental value of gA is shown with the black asterisk. The purple, red and
green bands are experimental results for Gu�d

A (Q2) taken from Refs. [44], [45] and [46] respectively. In the right panel, the
open blue squares show the prediction for Gu�d

p (Q2) assuming pion-pole dominance and using Eq. (29) to extract Gu�d
p (Q2)

from our lattice results for Gu�d
A (Q2) shown in the left panel, together with the corresponding fits, blue (orange) band is a fit

to the predicted Gu�d
p (Q2) using Gu�d

A (Q2) extracted from the plateau (two-state). The two fits are overlapping. The filled
blue squares show Gu�d

p (Q2) extracted directly from the nucleon matrix element with a fit to Eq. (32) (solid black line) after
omitting the two lowest Q2 values. The filled black circles are direct measurements of Gu�d

p (Q2) from Ref. [5]. The purple, red
and green bands use the experimental results for Gu�d

A (Q2) and pion pole to infer Gu�d
p (Q2).

FIG. 14. Results for the connected contribution to Gu+d
A (Q2) (left) and Gu+d

p (Q2) (right). The notation is the same as in
Fig. 12.

isoscalar combination. In Fig. 14 we illustrate our results for the connected contributions to G

u+d

A

(Q2) and G

u+d

p

(Q2)

using the same analysis as for the isovector. Once more, excited states are clearly more severe for G

u+d

p

(Q2) at low
Q

2 where the pion pole dominates and tends to decrease its value leading to a milder Q2-dependence.
In Fig. 15 we show the disconnected contributions to G

u+d

A

(Q2), which are clearly non-zero and negative. The
disconnected contributions reduce the value of Gu+d

A

(Q2) and for zero momentum transfer result in a value compatible
with the experimental one. As already mentioned, the disconnected contributions to G

u+d

p

(Q2) are particularly large
and reduce its value especially at low values of Q2. Adding the connected and disconnected contributions yield the

Alexandrou et al., arXiv:1705.03399
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FIG. 11. The data for (mµ/2MN )GP (Q
2)/gA from the eight

ensembles is plotted versus Q2 in units of GeV2. It shows
little dependence on the lattice spacing a or M⇡.
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FIG. 12. Plot of the ratio (Q2 +M2
⇡)G̃P (Q

2)/(4M2
pGA(Q

2))
versus Q2 for the data from the eight ensembles. This ratio
should be unity for all Q2 to validate the pion-pole dominance
hypothesis given in Eq. (11). Our data show significant devi-
ations, especially for Q2 . 0.2 GeV2.

The four improved ratios RI
1,2,3,4 are shown in Fig. 14

(right). Note that R[I]
1

+R
[I]
2

= 1 checks the PCAC rela-

tion given in Eq. (26); R[I]
3

= 1 tests the pion-pole dom-

inance ansatz Eq. (11); and R
[I]
4

= 1 tests the relation
Eq. (28). Comparing the two sets of panels shows that
improving the axial current has a very small e↵ect. This
is because the value of the improvement coe�cient cA,

that multiplies the correction term R
[I]
5

, is small. Thus,
improving the axial current to O(a) does not explain the

large deviation of R
[I]
1

+ R
[I]
2

from unity illustrated in
Fig. 14.

For all four ensembles, data in Fig. 14 show that

R
[I]
1

+R
[I]
2

⇡ R
[I]
3

for small Q2, however, both R
[I]
1

+R
[I]
2

and R
[I]
3

are much smaller than unity. The deviation of

R
[I]
4

from unity grows with Q2, but decreases as a ! 0

and M⇡ ! MPhysical

⇡ . This pattern is, in general, con-
sistent with these being discretization e↵ects. Note that
the corrections to 2bmGP (Q2) = (M2

⇡/2MN )G̃P (Q2), or

R
[I]
4

= 1, do not significantly impact R
[I]
1

+ R
[I]
2

⇡ R
[I]
3

because the dominant contribution to both sides comes
from R

[I]
1

.
The data for R

3

from all eight ensembles is plotted in
Fig. 12 and show that the deviations from unity increase
with decreasing Q2, a and M2

⇡ . For the physical pion
mass ensembles, theO(50%) deviation forQ2 < 0.2 GeV2

is surprisingly large. Such Q2 dependent deviations from
the PCAC relation are, generically, indicators of dis-
cretization artifacts. The increase in the deviations with
a does not support this expectation, and as shown in
Fig. 14, the O(a) improvement of the axial current does
not reduce the deviations. Therefore, the observed large
deviation remains to be explained.
Taking the data at face value, to obtain estimates at

Q2 ⌘ Q⇤ 2 = 0.88m2

µ and at Q2 = �M2

⇡ , from which
g⇤P /gA and g⇡NN

/gA are determined, we show, in Fig. 15,
the data for (Q2+M2

⇡)G̃P (Q2)/gA and the fit to it using
Eq. (25) by the solid line. The extrapolated values are
shown using the symbol star at Q2 ⌘ Q⇤ 2 = 0.88m2

µ and
the symbol plus at Q2 = �M2

⇡ . It is clear from Fig. 15,
that there are enough free parameters in Eq. (25) to fit
the data and the values obtained at Q2 ⌘ Q⇤ 2 = 0.88m2

µ

and Q2 = �M2

⇡ by extrapolation are reasonable. How-
ever, the contributions of terms proportional to c

2

and
c
3

(see Table VIII) increase as the lattice spacing a ! 0
and M⇡ ! 135 MeV. The quantitative change in behav-
ior is already clear in all three M⇡ ⇡ 220 MeV ensembles.
Thus, it is unlikely that the change in behavior between
the M⇡ ⇡ 310 MeV ensembles and those at lighter M⇡

is a statistical fluctuation. Because of this change in be-
havior, we get low estimates of g⇤P /gA and g⇡NN

/gA.
Given the data in Table VIII, to estimate g⇤P in the

limit a ! 0 and M⇡ ! 135 MeV, we make a fit using the
ansatz

g⇤P (a,M⇡)/gA = d
1

+d
2

a+
d
3

M2

⇡ + 0.88m2

µ

+d
4

M2

⇡ , (38)

where the leading behavior in M2

⇡ is taken to be the pion
pole term evaluated at the experimental momentum scale
of muon capture. We neglect possible finite volume cor-
rections in the data in obtaining the final estimates since
the data do not show an obvious dependence on M⇡L.
The simultaneous fits in a and M⇡ are shown in Fig. 16.
They give

g⇤P /gA = 3.48(14) ,

g⇤P = 4.44(18) , (39)

where the final value of g⇤P is obtained by multiplying
the ratio obtained from the fit by the experimental value
gA = 1.276.
We summarize lattice QCD results for g⇤P in Fig. 17.

The results g⇤P = 7.68±1.03 (Lin(2008) [29]), g⇤P = 6.4±
1.2 (Yamazaki(2009) [30]), and g⇤P = 8.47(21)(87)(2)(7)

3

Aµ

�µ�5 gA

Aµ

�µ�5 GA(Q2)

Aµ

p
2 g⇡NN �5

p
2 qµF⇡

⇠ 1
Q2+M2

⇡

FIG. 1. The Feynman diagrams illustrating the decomposition of the matrix element of the axial current is Aµ = u�µ�5d
within a nucleon state in terms of form factors. The plot on the left represents the interation at Q2 = 0 in which case the axial
current interacts with the nucleon with strength gA. The middle panel shows one of the lowest order Feynman diagrams that
contributes to GA(Q

2), and provides the basis for the dipole ansatz. The diagram on the right is the leading contribution to
the induced pseudoscalar form factor G̃P (Q

2) that is mediated by a pion intermediate state. Its coupling to the nucleon at the
pion pole defines g⇡NN.

value of the constant t
0

is typically chosen to be in
the middle of the range of Q2 of interest to minimize
z
max

. Reducing z
max

could improve the convergence of
the z-expansion. This is important in our calculation
because we have data at only the five lowest values of
momenta for most ensembles and can, therefore, keep
terms only upto O(z3). Our analysis of the data with

t
0

= 0 and t
0

= t
mid

0

= {0.12, 0.20, 0.40} GeV2, cor-
responding to the approximate midpoint value of Q2 on
the M⇡ ⇡ {130, 220, 310} MeV ensembles, respectively,
shows that the quality of the fits and the results are in-
sensitive to the choice of t

0

. We choose the midpoint

values, t
mid

0

, for presenting our final results.
The requirement that GA(Q2) ! Q�4 as Q2 ! 1

requires QnGA(Q2) ! 0 for n = 0, 1, 2, 3 [13]. These
constraints can be expressed as four sum rules

k
maxX

k=n

k(k�1) . . . (k�n+1)ak = 0 n = 0, 1, 2, 3 . (10)

Incorporating these sum rule conditions ensures that the
ak are not only bounded but must also decrease at large
k [13]. For all but the two physical quark mass ensembles,
a09m130 and a06m135, we have six data points (zero and
five non-zero momentum cases). We, therefore, analyzed
the data using k

max

= 5, 6, 7 and 8. Including the
four sum rules, these values of k

max

correspond to 4, 3,
2, and 1 degrees of freedom, respectively. We use the
quality of the fits and the stability of the value of the axial
charge radius hr2Ai obtained from them as checks on the
consistency of the analysis, ensemble by ensemble. Based
on these checks, we drop k

max

= 5 fits as the associated
�2/d.o.f. are not good and the k

max

= 8 fits, as they have
only one degree of freedom.

Our final result, hrAi = 0.47(7)(2) fm, is obtained as
an average of the k

max

= 6 and 7 analyses, which we
label k2+4 and k3+4 to make explicit that four powers of
z are constrained by the sumrules. This lattice estimate
is smaller than the current phenomenological estimates

given in Eq. (6), but consistent with 0.51(6) fm obtained
by the MiniBooNE collaboration [5].
The induced pseudoscalar form factor G̃P (Q2) is typi-

cally analyzed assuming the pion-pole dominance ansatz:

G̃P (Q
2) = GA(Q

2)


4M2

N

Q2 +M2

⇡

�
. (11)

This follows from the PCAC relation, Eq. (3), if
2bmGP (Q2) = (M2

⇡/2MN )G̃P (Q2). Once the modeling
of the Q2 behavior of G̃P (Q2) is under control, one can
determine the induced pseudoscalar charge, g⇤P and the
pion-nucleon coupling g⇡NN

. Experimentally, G̃P (Q2)
is probed in muon capture by a proton, µ� + p !
⌫µ + n [14, 15]. From these measurements, g⇤P is defined
to be

g⇤P ⌘ mµ

2MN
G̃P (Q

2 = Q⇤ 2 ⌘ 0.88m2

µ) . (12)

Current estimates from the MuCap experiment [14, 15],
and from chiral perturbation theory [9, 16] are

g⇤P |MuCap

= 8.06(55) ,

g⇤P |�PT

= 8.29+0.24
�0.13 ± 0.52 . (13)

To compare our lattice QCD estimates to these phe-
nomenological values, we first extract g⇤P from fits to
G̃P (Q2) versus Q2 for each ensemble, and then extrapo-
late these data to a = 0 and M⇡ = 135 MeV. We obtain
a surprisingly low value, g⇤P = 4.49(19), compared to the
values given in Eq. (13). This discrepency arises due to
large deviations in the PCAC relation involving the three
form factors as discussed further in Sec. VIII. We also
show that using just a pion-pole ansatz to extrapolate
g⇤P (Q

⇤ 2) obtained from simulations at M⇡ > 300 MeV
to M⇡ ! MPhysical

⇡ is not valid.
Lastly, we evaluate the pion-nucleon coupling g⇡NN

using the Goldberger-Treiman (GT) relation g⇡NN =
MNgA/F⇡, and as the residue at the pion-pole at Q2 =

Deviations from pion-pole 
dominance ansatz at low-Q2

Gupta et al., arXiv:1705.06834



LQCD input for the quasi-elastic scattering region:

     dependence of nucleon axial form factor
fully-controlled uncertainties 
competitive with experiment
z parameterisation removes assumption of dipole form

Nucleon pseudo scalar form factor
fully-controlled uncertainties 
competitive with experiment
deviations from pion-pole ansatz observed

Quasi-elastic scattering

Q2

N

ν
l

N



Constraining 𝜈-nucleus interactions

Neutrino charged-current  
cross-section
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FIG. 9 Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figures 28, 11, and 12 with the inclusion of additional lower energy
CC inclusive data from N (Baker et al., 1982), ⇤ (Baranov et al., 1979), ⌅ (Ciampolillo et al., 1979), and ? (Nakajima et al.,
2011). Also shown are the various contributing processes that will be investigated in the remaining sections of this review.
These contributions include quasi-elastic scattering (dashed), resonance production (dot-dash), and deep inelastic scattering
(dotted). Example predictions for each are provided by the NUANCE generator (Casper, 2002). Note that the quasi-elastic
scattering data and predictions have been averaged over neutron and proton targets and hence have been divided by a factor
of two for the purposes of this plot.

J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307
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Resonance region

Energies above ~200 MeV, inelastic  
excitations from pion production

Dominant contribution from  
Δ resonance

N*’s also important at high Eν

Very difficult to access experimentally 
Constrained only from PCAC

QCD calculations possible

Need to account for unstable nature of resonance: extract 
N→Nπ transition FFs

Δ

π

N

ν

l

N



Lattice QCD calculation of axial N ∆ transition form factor :

Resonance region

C Alexandrou et al., Phys.Rev. D83 (2011) 014501 

21

C
A 5

Q2 2

m⇡ = 297

m⇡ = 353
m⇡ = 330

(a)

C
A 6
/C

A 5

Q2 2

m⇡ = 297

m⇡ = 353
m⇡ = 330

(b)

FIG. 6: Plot (a) shows the Q2-dependence of the axial form factor CA
5 extracted from the coarse and fine

DWF lattices. The corresponding mixed action results [21] have also been included. The solid blue (dashed

black) line is from the dipole (exponential) fit for to the fine DWF lattice results. Note that the error band

corresponds to the dipole fit. The dotted brown line is the dipole fit to the experimental data. The ratio

CA
6 /CA

5 versus Q2 is plotted in (b). The dashed black line refers to the fine DWF lattice results and is the

pion pole dominance prediction of Eq. (36). The solid blue line is a fit to a monopole form c0/(1+Q2/m2).

describes satisfactorily the ratio yielding a heavier mass parameter m than the lattice value of

the pion mass (see Table III). Such behavior has been observed also for the hybrid and quenched

Wilson actions [21].

The lattice results for the CA
6 are plotted on Fig. 7. The curve shown (solid line) in the figure

corresponds to the form

d0 c0
(1 +Q2/m2

A)
2(1 +Q2/m2)

, (41)

where c0 and m are the parameters of the monopole term given in Eq. (36) that are expected to

describe well the CA
6 /C

A
5 ratio provided the pion pole dominance is applicable. The form described

by the expression of Eq. (41), seems to provide the best fit to the fine DWF data. On the other

hand, CA
6 is related to the CA

5 form factor through the expression

CA
6 (Q

2) = CA
5 (Q

2)
m2

N

m2
⇡ +Q2

.

The curve that corresponds to the dashed line is obtained from fitting the fine DWF data to this
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FIG. 5: In plot (a) we show the Coulomb quadrupole form factor GC2(Q2) extracted from the fine DWF

lattice measurements. Along with it we provide also the result from the hybrid action approach [28]. Plot (b)

depicts the corresponding RSM evaluated in the rest frame of the � baryon. Non-zero values are confirmed,

for the lowest Q2 values accessible on the lattices. We also show results using the hybrid action taken from

Ref. [28]. Experimental results are also included using the same notation as those in Fig. 4.

IV. AXIAL N TO � TRANSITION FORM FACTORS AND THE

GOLDBERGER-TREIMAN RELATION

A. The Electro-weak and Pseudo-scalar transition matrix element

The nucleon to � matrix element of the axial vector current is parameterized in terms of four

dimensionless form factors. In the Adler parameterization [44] it is written as follows

h�(p0, s0)|A3
µ|N(p, s)i = i

r
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with the axial current given in Eq. (6).

The form factors CA
3 (q

2) and CA
4 (q

2) belong to the transverse part of the axial current and are

both suppressed [27] relative to the longitudinal form factors CA
5 (q

2) and CA
6 (q

2), which are the

dominant ones and are the ones considered in this work.
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form. In this case CA
5 is being described by the dipole form shown in Fig. 6(a), while the nucleon

and pion masses are the lattice evaluated ones.

C
A 6

Q2 2

m⇡ = 297

m⇡ = 353
m⇡ = 330

FIG. 7: Lattice results for CA
6 are shown as a function of Q2. The solid blue line is the fit to the form of

Eq. (41), while the dashed black line corresponds to the form CA
5

� m2
N

m2
⇡+Q2

�

. Note that for the latter fit, the

CA
5 factor is described by the dipole fit parameters.

C. The Pseudo-scalar transition form factor and Goldberger-Treiman relation

The pseudo-scalar form factor G⇡N�(Q2), defined via the matrix element given in Eq. (28),

is extracted directly from the optimized linear combination S1 with the pseudo-scalar current

operator insertion of Eq. (6). In the large Euclidean time limit where only the nucleon and �

states dominate the corresponding ratio yields

SP
1 (q ; �5) =

r

2

3

r

EN +mN

EN



q1 + q2 + q3
6mN

f⇡m
2
⇡

2mq(m2
⇡ +Q2)

�

G⇡N�(Q
2) . (42)

Notice that the extraction of G⇡N� from the above equation requires knowledge of the quark

mass mq and the pion decay constant, f⇡, on the given ensembles. Calculation of f⇡ requires the

CAVEAT: Complexities at physical point with unstable resonances



Constraining 𝜈-nucleus interactions

Neutrino charged-current  
cross-section
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FIG. 9 Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figures 28, 11, and 12 with the inclusion of additional lower energy
CC inclusive data from N (Baker et al., 1982), ⇤ (Baranov et al., 1979), ⌅ (Ciampolillo et al., 1979), and ? (Nakajima et al.,
2011). Also shown are the various contributing processes that will be investigated in the remaining sections of this review.
These contributions include quasi-elastic scattering (dashed), resonance production (dot-dash), and deep inelastic scattering
(dotted). Example predictions for each are provided by the NUANCE generator (Casper, 2002). Note that the quasi-elastic
scattering data and predictions have been averaged over neutron and proton targets and hence have been divided by a factor
of two for the purposes of this plot.

J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307
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Shallow inelastic region

In inelastic regime, quark PDFs of the nucleon control scattering 
cross-section
In shallow inelastic region, both resonances and DIS are 
important
Multi-meson channels may become important
Nuclear effects are different in νA vs. eA (MINERνA)
DIS structure functions accessible in lattice QCD

low moments of structure functions  
controlled

x-dependence difficult but promising

Mn =

Z 1

�1
x

n
f(x)dx, n / 4

ν

ν, l

N
X



Lattice QCD typically calculates low moments of PDFS
Can separate and isolate contributions from

Strangeness
Charge symmetry violation
Gluons

Nucleon PDFs

5

TABLE II: Our results for the intrinsic spin ( 12�⌃), angular
momentum (L) and total (J) contributions to the nucleon
spin and to the nucleon momentum hxi, in the MS-scheme
at 2 GeV, from up (u), down (d) and strange (s) quarks and
from gluons (g), as well as the sum of all contributions (tot.),
where the first error is statistical and the second a systematic
due to excited states.

1
2�⌃ J L hxi

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24) 0.453(57)(48)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g - 0.133(11)(14) - 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

show schematically the various contributions to the spin
and momentum fraction.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calcula-
tion of the quark and gluon contributions to the pro-
ton spin, directly at the physical point. Individual
components are computed for the up, down, strange
and charm quarks, including both connected (valence)
and disconnected (sea) quark contributions. Our final
numbers are collected in Table II. The quark intrinsic
spin from connected and disconnected contributions is
1

2

�⌃
u+d+s

= 0.299(12)(3)|
conn.

� 0.098(12)(4)|
disc.

=
0.201(17)(5), while the total quark spin is J

u+d+s

=
0.255(12)(3)|

conn.

+ 0.153(60)(47)|
disc.

= 0.408(61)(48).
Our result for the intrinsic quark spin contribution agrees
with the upper bound set by a recent phenomenologi-
cal analysis of experimental data from COMPASS [45],
which found 0.13 <

1

2

�⌃ < 0.18. The results for L

q

and J

q

in Table II are also consistent with an analysis of
generalized parton distributions [45]. Using the spin sum
one would deduce that J

g

= 1

2

�J

q

=0.092(61)(48), which
is consistent with taking J

g

= 1

2

hxi
g

= 0.133(11)(14)
via the direct evaluation of the gluon momentum frac-
tion, which suggests that B

g

20

(0) is indeed small. Fur-
thermore, we find that the momentum sum is satisfied

P
q

hxi
q

+hxi
g

= 0.497(12)(5)|
conn.

+0.307(121)(95)|
disc.

+
0.267(12)(10)|

gluon

= 1.07(12)(10) as is the spin sum
of quarks and gluons giving J

N

=
P

q

J

q

+ J

g

=
0.408(61)(48) + 0.133(11)(14) = 0.541(62)(49) resolving
a long-standing puzzle.
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First calculations of x-dependence of nucleon PDFs
Rapid progress, but many systematics to be controlled
Will not improve on experimental constraints in near future

Nucleon PDFs
First results
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LQCD input for the resonance region:

First calculations of axial transition form factors 
resonances difficult for lattice QCD
currently: uncontrolled systematic uncertainties,  
unphysical values of quark masses
formalism in place to move to physical case

LQCD input for the inelastic  
scattering region:

Much recent progress, but challenging  
region for direct input to neutrino program

Resonance region

Δ

π

N

ν
l

N

l

ν

ν, l

N
X



Targets are nuclei (C, Fe, Ar,  Pb, H2O)  
so how relevant are nucleon FFs, PDFs?

EMC effect
Quenching of gA in GT transitions

Experimental investigations: MINERνA

Nuclear effects

Calculate matrix elements in light nuclei from first principles

        EFT to reach heavy nuclear targets relevant to experiment

First calculations of axial charge of light nuclei

Δ

π

N

ν

l



Gamow-Teller transitions in 
nuclei are a stark example of 
problems

Well-measured

Best nuclear structure calculations 
are systematically off by 20–30%

Large range of nuclei (30<A<60) 
where spectrum is well described

QRPA, shell-model,...

Correct for it by “quenching” axial 
charge in nuclei ...

Nuclear effects

Kumar et al. J. Phys. G43 (2016)

(free-nucleon)

different nuclei 
30<A<60



Nuclear physics from LQCD

Nuclei on the lattice 

Calculations of matrix elements of 
currents in light nuclei just beginning

Deeply bound nuclei: 
use the same techniques as for single 
hadron matrix elements

Near threshold states: 
need to be careful with volume 
effects

Phiala Shanahan

Gluon Structure of Hadrons 
and Nuclei 



Nuclei on the lattice 

Hard problem

Noise:  
Statistical uncertainty grows 
exponentially with number of 
nucleons

Complexity: 
Number of contractions grows 
factorially 

Nuclear physics from LQCD

[Detmold & Savage, Detmold & Orginos; Doi & Endres]



NPLQCD collaboration  
QCD with unphysical  
quark masses      
mπ~800 MeV, mN~1,600 MeV

mπ~450 MeV, mN~1,200 MeV

Spectrum of light nuclei (A<5)
[PRD 87 (2013), 034506]

Nuclear structure: magnetic 
moments, polarisabilities (A<5)
[PRL 113,  252001 (2014), PRD 92, 114502 (2015)]

First nuclear reaction: np→dγ 
[PRL 115, 132001 (2015)] 

 Unphysical nuclei

Proton-proton fusion  
and tritium β-decay 

Double β-decay     
mπ~800 MeV, mN~1,600 MeV

 



Spectrum of light nuclei

NPLQCD Phys.Rev. D87 (2013), 034506 
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Hadron/nuclear energies are modified by presence of fixed/constant 
external fields

Example: fixed magnetic field 
 
 
 
 

Calculations with multiple fields        
         extract coefficients of response  
e.g., magnetic moments, polarisabilities, …

Not restricted to simple EM fields 
Axial MEs: uniform axial background field

Background field method

[NPLQCD PRL 113,  252001 (2014)]

E( ~B) =
q

M2 + (2n+ 1)|Qe ~B|� ~µ · ~B
landau level mag. mmt

mag. polarisability

�2⇡�M0| ~B|2 � 2⇡�M2TijBiBj + . . .



Example:    fixed magnetic field         moments, polarisabilities 

Axial MEs:  fixed axial background field         axial charges, other matrix elts. 

 

 

 

 
Second order piece: being used for calculations of double-beta decay

Axial background field

[NPLQCD Nucl. Phys. A743,  170 (2004)]

C�u;�d(t) = + +� �2

+ �3
Linear response 
gives axial matrix  
element

Implicit sum over 
current insertion 
times



Simplest semileptonic weak  
decay of a nuclear system  
 

Gamow-Teller (axial current)  
contribution to decays of nuclei  
not well-known from theory
Understand multi-body contributions  
to                 better predictions for  
decay rates of larger nuclei

Kumar et al. J. Phys. G43 (2016)

(free-nucleon)

different nuclei 
30<A<60

Tritium β-decay

    We calculate
gAhGTi = h3He|q�k�5⌧�q|3Hi

hGTi



Form ratios of compound 
correlators to cancel leading  
time-dependence: 
 

Ground state ME revealed 
through “effective ME plot”
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FIG. 1. The ratios of correlation functions that determine
the unrenormalized isovector axial charge of the proton. The
orange diamonds (blue circles) correspond to the SS (SP) cor-
relator ratios, Rp(t), as defined in Eq. (4), and the band cor-
responds to a constant fit to the plateau interval of both SS
and SP.

as the proton has two valence up quarks and one va-
lence down quark. Consequently, using at least one(two)
nonzero value(s) of �d(u) enables extraction of the linear
response using simple fits or, in the more general cases
below, by inverting the Vandermonde matrix. The dif-
ference of the up-quark and down-quark matrix elements
can be used to construct the desired three-point function
containing the isovector axial current. This can then be
combined with the zero-field two-point function to form
a ratio that asymptotes to the desired axial charge at late
times, namely

Rp(t) =

⇣
C

(p)
�u;�d=0(t)� C

(p)
�u=0;�d

(t)
⌘���

O(�)

C

(p)
�u=0;�d=0(t)

, (3)

where the ratios are averaged over both spins, and
“
��
O(�)

” extracts the coe�cient of � in the preceding ex-

pression. Then,

Rp(t) ⌘ Rp(t+ 1)�Rp(t) �! gA

ZA
. (4)

The e↵ective-gA plots resulting from the correlator di↵er-
ences are shown in Fig. 1, along with constant fits that
extract gA from the late-time asymptote. The extracted
value is gA/ZA = 1.298(2)(6). Including the renormal-
ization factor, this result yields an axial-current matrix
element of gA = 1.13(2)(7), which is consistent with pre-
vious determinations from standard three-point function
techniques at this pion mass [46, 47].

The GT Matrix Element for Tritium �-decay: The
half-life of tritium, t1/2, is related to the F and GT matrix
elements by [1]

(1 + �R)fV
K/G

2
V

t1/2 =
1

hFi2 + fA/fV g

2
AhGTi2 , (5)

FIG. 2. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in 3H (up-
per panel), and the ratio of the isovector axial matrix ele-
ment in 3H to that in the proton (lower panel). The orange
diamonds (blue circles) correspond to the SS (SP) e↵ective
correlator ratios and the bands correspond to constant fits to
the asymptotic behavior.

where the factors on the left-hand side are known pre-
cisely from theory or experiment. On the right-hand
side, fA,V denote Fermi functions [48] and hFi and
hGTi are the F and GT reduced matrix elements, re-
spectively. hFi is constrained to be very close to unity
by the Ademollo-Gatto theorem [49], modified only by
second-order isospin-breaking and electromagnetic cor-
rections. However, gAhGTi = h3He|q�k�5⌧�q|3Hi is less
constrained, and its evaluation is the focus of this section.
By isospin symmetry, the GT matrix element for

3H!3He e

�
⌫ is related to the axial charge of the tri-

ton, gA(3H), when the light quarks are degenerate and
in the absence of electromagnetism. Analogous to Rp

above, the ratio R

3H(t) of correlation functions is con-
structed in background fields such that R3H(t) ! gA(3H)
in the large-time limit. The analysis of these correlation
functions is more complex than for the proton because
the triton has four up quarks and five down quarks and
the correlators are thus quartic and quintic polynomi-
als in �u,d, respectively. Acting with the inverse of the
Vandermonde matrix on the calculated correlation func-
tions is su�cient to extract the terms linear in �u,d and
gives results consistent with a polynomial fit. Results for
R

3H(t) are shown in Fig. 2 along with a constant fit to
the asymptotic value gA(3H)/ZA. Also shown in Fig. 2
is hGTi(t) = R

3H(t)/Rp(t), which is independent of ZA,
and the fit to its asymptotic value, gA(3H)/gA. Analyses
of these ratios lead to

gA(3H)

ZA
= 1.272(6)(17),

gA(3H)

gA
= 0.979(3)(10), (6)

where the first uncertainties are statistical and the sec-
ond arise from systematics of the fits in both the field
strength and temporal separation as well as di↵erences in

half-life
axial MEvector ME

known from theory or expt.



Take combinations to pull out isotensor axial polarisability 
(two body piece)

Two-body contribution resolved from zero

Tritium β-decay
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FIG. 4. The left panel shows the quantity R

+
3S1,1S0

(t) used to extract the pp ! d bare transition matrix

element from the constant fit to its late-time region [16]. The right panel is a plot of quantity R

+
3S1,1S0

(t) used
to estimate the magnitude of excited-state contamination to the extraction of pp ! d bare matrix element,
see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
functions, respectively. The horizontal bands show constant correlated SP-SS fits to the late-time behavior
of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N

4
c in the SU(4) Wigner-symmetry limit. With this

supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N

4
c ) ⇠ O(1%) of the dominant term.

Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-
strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-

(a) (b)

FIG. 5. The (a) ratio Rnn!pp(t) and (b) subtracted ratio R

(sub)
nn!pp(t) that are constructed from the SP and

SS correlation functions, as given in Eq. (31) and Eq. (33) respectively. Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The horizontal bands show
constant correlated SP-SS fits to the late-time behavior of the quantities.
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FIG. 6. (a) The combination R

(lin)
nn!pp(t) corresponding at late times to the unrenormalized short-distance

contribution to the matrix element as shown in Eq. (32) and Eq. (33). (b) R

(full)
nn!pp(t), the sum of the

long-distance and short-distance contributions to the matrix element. In both panels, the orange diamonds
and blue circles correspond to the SS and SP results, respectively. The horizontal bands denote fits to the
SP results at late times, used to extract the final values of the matrix elements. NORMALISE by g
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A/� ??

alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with external currents, can be systematically studied in the framework
of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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SP results at late times, used to extract the final values of the matrix elements. NORMALISE by g
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alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with external currents, can be systematically studied in the framework
of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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FIG. 6. The left panel shows R(lin)
nn!pp(t) (normalized by g

2
A/�), corresponding to the bare short-distance

contribution to the nn ! pp matrix element at late times, Eq. (36). The right panel shows R

(full)
nn!pp(t)

(normalized by g

2
A/�), which sums the long-distance and short-distance contributions to the matrix element,

Eq. (37). In both panels, the orange diamonds and blue circles correspond to the SS and SP results,
respectively. The horizontal bands denote constant fits to the SP results at late times, which are used to
extract the final values of the matrix elements. The SS points are slightly o↵set in t for clarity.

the axial-current renormalization constant, ZA. In each of these expressions, the first uncertainties
arise from statistical sampling, systematic e↵ects from fitting choices, and deviations from Wigner
symmetry as described in Sec. III B 2. The second uncertainties encompass di↵erences between
analysis methods. Clearly, the short-distance contribution is suppressed relative to the deuteron-
pole contribution but it is non-negligible. There are additional systematic uncertainties that are
not included in the above uncertainty estimations, including finite-volume e↵ects, lattice-spacing
artifacts, and electromagnetic and quark-mass e↵ects. At present, it is di�cult to quantify such
uncertainties, although they are not expected to qualitatively alter the results of this exploratory
calculation. In the future, it will be important to investigate such e↵ects by improving upon the
calculations presented here, as discussed further in Sec. VI.

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/) and explicitly used
to determine the coe�cient of a short-distance, two-nucleon, second-order axial-current operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [20, 66–70] is a natural approach
to use at this heavy quark mass as the momenta involved in 2⌫�� decays are small compared with
the start of the two-nucleon t-channel cut when isospin breaking and electromagnetism are included
(in this isospin-symmetric numerical work, the transition is below threshold for massive leptons).
At lighter quark masses, including the physical point, pionful EFTs will likely be required [71].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with background fields, can be systematically studied in the framework
of EFT(⇡/) [20, 67, 69, 70]. As s-wave interactions in the two-nucleon sector are strong, generating
anomalously large two-nucleon scattering lengths, they must be included to all orders. However,
interactions in higher partial waves can be included perturbatively. In the dibaryon formulation of

�(I=2)
ATwo-body contribution



What about larger (phenomenologically-relevant) nuclei?

Nuclear effective field theory:

1-body currents are dominant
2-body currents are sub-leading  
but non-negligible

Determine one body contributions from single nucleon

Determine few-body contributions from A=2,3,4... 

Match EFT and many body methods to LQCD to make 
predictions for larger nuclei

Larger nuclei



EM transverse response function shows important two-body 
effects: 12C at q = 570 MeV 

Expect to be similarly important for axial

Two-body effects
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FIG. 1. (Color online) Euclidean electromagnetic longitudinal
(top panel) and transverse (lower panel) response function of
12C at q = 570 MeV. Experimental data are from Ref. [22].

that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !

qe

) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as ⌧ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q,!). Indeed, in this limit (⌧ >⇠ 1/!

qe

)
contributions from unmeasured strength at ! > !

max

are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
In the longitudinal case, destructive interference between
the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is e↵ective over the whole
imaginary-time region we have considered, with the im-
plication that excess transverse strength is generated by
two-body currents not only at ! >⇠ !

qe

, but also in the
quasi-elastic and threshold regions of RT (q,!). It is re-
assuring to see that the full predictions for both longitu-

dinal and transverse Euclidean response functions are in
excellent agreement with data.
At larger values of ⌧ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean

neutral-weak response functions: the transverse (top
panel) and interference (lower panel) E↵�(q, ⌧), having
respectively ↵� = xx and ↵� = xy in the notation of
Ref. [1]. The Exy(q, ⌧) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q,!) enters with opposite sign de-
pending on whether the process A(⌫l, ⌫0l) or A(⌫l, ⌫

0
l ) is

considered [1]. On the other hand, in the transverse
case the interference of VNC and ANC terms vanishes,
and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low
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(top panel) and transverse (lower panel) response function of
12C at q = 570 MeV. Experimental data are from Ref. [22].

that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !

qe

) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as ⌧ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q,!). Indeed, in this limit (⌧ >⇠ 1/!

qe

)
contributions from unmeasured strength at ! > !

max

are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
In the longitudinal case, destructive interference between
the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is e↵ective over the whole
imaginary-time region we have considered, with the im-
plication that excess transverse strength is generated by
two-body currents not only at ! >⇠ !

qe

, but also in the
quasi-elastic and threshold regions of RT (q,!). It is re-
assuring to see that the full predictions for both longitu-

dinal and transverse Euclidean response functions are in
excellent agreement with data.
At larger values of ⌧ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean

neutral-weak response functions: the transverse (top
panel) and interference (lower panel) E↵�(q, ⌧), having
respectively ↵� = xx and ↵� = xy in the notation of
Ref. [1]. The Exy(q, ⌧) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q,!) enters with opposite sign de-
pending on whether the process A(⌫l, ⌫0l) or A(⌫l, ⌫

0
l ) is

considered [1]. On the other hand, in the transverse
case the interference of VNC and ANC terms vanishes,
and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low
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Lattice efforts have potential to impact  
ν energy determinations

Precise determinations with controlled  
percent-level uncertainties within ~5 years

Axial and pseudoscalar FFs determined with momenta less  
than a few GeV 
Large momentum FFs (> GeV) difficult. Novel ideas exist, need testing

Early results with promising applications
Transition FFs  
Formalism exists but developments still necessary for higher states above Nππ 
inelastic threshold
Application of EFT using 2-, 3- body matrix elements to constrain nuclear effects

Conclusion
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