Lattice QCD input for neutrino-nucleus interactions

Phiala Shanahan MIT

Long-baseline neutrino experiments

Neutrinos produced as secondary decay products of hadrons from primary reactions of protons with nuclei

neutrino energy must be reconstructed event-by-event from the final state of the reaction

DUNE Need energy reconstruction to better than 100 MeV

Robust understanding of both nucleon and nuclear level amplitudes essential

Adams C, et al. arXiv:1307.7335

Constraining v-nucleus interactions

- For LBNEs neutrino energy distributions peak at 1-10 GeV
- Challenging region: several processes contribute
 - Quasielastic lepton scattering
 - Inelastic continuum / shallowinelastic region
 - Resonances
- Lattice QCD can provide direct non-perturbative QCD predictions of nucleon and nuclear matrix elements

Neutrino charged-current cross-section

Lattice QCD

Calculate matrix elements directly from QCD

- Numerical first-principles approach
- Euclidean space-time t
 ightarrow i au
 - Finite lattice spacing a
 - Volume $L^3 \times T \approx 32^3 \times 64$
 - Boundary conditions
- Finite but large number of d.o.f

Approximate the QCD path integral by Monte Carlo

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \mathcal{D}\overline{\psi} \mathcal{D}\psi \mathcal{O}[A, \overline{\psi}\psi] e^{-S[A, \overline{\psi}\psi]} \longrightarrow \langle \mathcal{O} \rangle \simeq \frac{1}{N_{\text{conf}}} \sum_{i}^{N_{\text{conf}}} \mathcal{O}([U^{i}])$$

with field configurations U^{i} distributed according to $e^{-S[U]}$

Lattice QCD works

Ground state hadron spectrum reproduced

Predictions for new states with controlled uncertainties

Lattice QCD for flavour physics

- For simple observables LQCD is precision science
 - Combine with experiment to determine SM parameters
 - Verify CKM paradigm
- SM predictions with reliable uncertainty quantification
- I.e., LQCD has had significant impact in flavour physics

Impact on neutrino program: a current challenge to LQCD

LQCD input for v-nucleus interactions

- 1. Directly access QCD single-nucleon form factors without nuclear corrections
 - Reliable calculations with fully-controlled uncertainties

- 2. Calculate matrix elements in light nuclei from first principles
 - EFT to reach heavy nuclear targets relevant to experiment
 - First calculations of axial charge of light nuclei

Constraining v-nucleus interactions

Neutrino charged-current cross-section

Quasi-elastic scattering

Cross-section for quasi-elastic neutrino-nucleon scattering

$$\frac{d\sigma}{dQ^2} = \frac{G_f^2 M^2 \cos^2 \theta_C}{8\pi E_v^2} \left[A \mp \frac{(s-u)}{M^2} B + \frac{(s-u)^2}{M^4} C \right]$$

$$A = \frac{(m^{2} + Q^{2})}{M^{2}} [(1 + \tau)G_{A}^{2} - (1 - \tau)F_{1}^{2} + \tau(1 - \tau)F_{2}^{2} + 4\tau F_{1}F_{2}$$

$$-\frac{m^{2}}{4M^{2}} \left((F_{1} + F_{2})^{2} + (G_{A} + 2G_{P})^{2} - \left(\frac{Q^{2}}{M^{2}} + 4\right)G_{P}^{2} \right) \right]$$

$$B = \frac{Q^{2}}{M^{2}}G_{A}(F_{1} + F_{2})$$

$$C = \frac{1}{4}(G_{A}^{2} + F_{1}^{2} + \tau F_{2}^{2})$$

$$G = \frac{1}{4}(G_{A}^{2} + F_{1}^{2} + \tau F_{2}^{2})$$

 $F_{1,2}$ Well-determined from electron scattering expts G_P can be related to G_A by pion pole dominance

QE, $\nu_{\mu},\;\Delta({\rm d}\sigma/{\rm dQ}^2)$ [%] for 1% Change in FF, ${\rm M_{A}}{=}1$

Axial form factor

Traditionally assumed to have dipole form

 $G_A(Q^2) = \frac{g_A}{\left(1 + Q^2 / M_A^2\right)^2}$

- $g_A = 1.2671$ determined with high precision from nuclear beta decay
- axial mass M_A must be determined experimentally

BUT

Electromagnetic FFs show significant deviation from dipole parametrisation form

More general alternatives

- Model-indep z-expansion
 Bhattacharya et al, Phys.Rev. D84 (2011) 073006
- Direct LQCD results

Total QE cross-section sensitive to the axial mass:

Mosel, Ann. Rev. Nucl. Part. Sci. 66, 171 (2016)

Nucleon Axial FFs from LQCD

- $g_A = G_A(Q^2 = 0)$ is a historically difficult calculation
- Recent calculations in agreement with experiment with fully-controlled uncertainties
- Q^2 -dependence well-determined in LQCD competitive with experiment
- z-parameterisations remove assumption of dipole form

Nucleon Axial F Fs from

- $g_A = G_A(Q^2 = 0)$ is a historically difficult cancer with fully-controlled uncertainties
- Q^2 -dependence well-determined in LQCD competitive with experiment

0.8

z-parameterisations remove assumption of dipole form

Alexandrou et al., arXiv:1705.03399

Gupta et al., arXiv:1705.06834

0.8

Nucleon Axial FFs from LQCD

Strange quark contributions determined separately and can be isolated

Green et al., Phys. Rev. D 95, 114502 (2017)

Nucleon pseudoscalar FF

Calculations with controlled uncertainties in agreement with experiment

Alexandrou et al., arXiv:1705.03399

Deviations from pion-pole dominance ansatz at low- Q^2

$$\tilde{G}_P(Q^2) = G_A(Q^2) \left[\frac{4M_N^2}{Q^2 + M_\pi^2} \right]$$

Gupta et al., arXiv:1705.06834

Quasi-elastic scattering

LQCD input for the quasi-elastic scattering region:

- Q^2 dependence of nucleon axial form factor
 - fully-controlled uncertainties
 - competitive with experiment
 - z parameterisation removes assumption of dipole form
- Nucleon pseudo scalar form factor
- fully-controlled uncertainties
- competitive with experiment
- deviations from pion-pole ansatz observed

Constraining v-nucleus interactions

Neutrino charged-current cross-section

Resonance region

- Energies above ~200 MeV, inelastic excitations from pion production
- Dominant contribution from $\Delta resonance$
- N*'s also important at high E_v
- <u>Very</u> difficult to access experimentally Constrained only from PCAC
- QCD calculations possible
- Need to account for unstable nature of resonance: extract $N \rightarrow N\pi$ transition FFs

Resonance region

Lattice QCD calculation of axial N Δ transition form factor:

CAVEAT: Complexities at physical point with unstable resonances

Constraining v-nucleus interactions

Neutrino charged-current cross-section

Shallow inelastic region

- In inelastic regime, quark PDFs of the nucleon control scattering cross-section
- In shallow inelastic region, both resonances and DIS are important
- Multi-meson channels may become important
- Nuclear effects are different in vA vs. eA (MINERvA)
- DIS structure functions accessible in lattice QCD
 - low moments of structure functions controlled

$$M_n = \int_{-1}^1 x^n f(x) dx, \quad n \lessapprox 4$$

• x-dependence difficult but promising

Nucleon PDFs

Lattice QCD typically calculates low moments of PDFS

- Can separate and isolate contributions from
 - Strangeness
 - Charge symmetry violation
 - Gluons

e.g., all terms of nucleon momentum decomposition calculated with controlled systematics

C. Alexandrou et al., arXiv:1706.02973

Nucleon PDFs

Resonance region

LQCD input for the resonance region:

- First calculations of axial transition form factors
 - resonances difficult for lattice QCD
 - currently: uncontrolled systematic uncertainties, unphysical values of quark masses
 - formalism in place to move to physical case

LQCD input for the inelastic scattering region:

Much recent progress, but challenging region for direct input to neutrino program

Nuclear effects

- Targets are nuclei (C, Fe, Ar, Pb, H₂O) so how relevant are nucleon FFs, PDFs?
 - EMC effect
 - Quenching of g_A in GT transitions
- Experimental investigations: MINERvA

Calculate matrix elements in light nuclei from first principles

EFT to reach heavy nuclear targets relevant to experiment First calculations of axial charge of light nuclei

Nuclear effects

- Gamow-Teller transitions in nuclei are a stark example of problems
- Well-measured
- Best nuclear structure calculations are systematically off by 20–30%
 - Large range of nuclei (30<A<60) where spectrum is well described
 - QRPA, shell-model,...
 - Correct for it by "quenching" axial charge in nuclei ...

Nuclear physics from LQCD

Nuclei on the lattice

- Calculations of matrix elements of currents in light nuclei just beginning
- Deeply bound nuclei: use the same techniques as for single hadron matrix elements
- Near threshold states: need to be careful with volume effects

Nuclear physics from LQCD

Nuclei on the lattice

Hard problem

 Noise:
 Statistical uncertainty grows exponentially with number of nucleons

 Complexity: Number of contractions grows factorially

Unphysical nuclei

NPLQCD collaboration

- QCD with unphysical quark masses
 m_π~800 MeV, m_N~1,600 MeV
 m_π~450 MeV, m_N~1,200 MeV
- Spectrum of light nuclei (A<5) [PRD 87 (2013), 034506]
- Nuclear structure: magnetic moments, polarisabilities (A<5)
 [PRL II3, 252001 (2014), PRD 92, 114502 (2015)]
- First nuclear reaction: $np \rightarrow d\gamma$ [PRL **II5**, 132001 (2015)]

- Proton-proton fusion and tritium β -decay
- Double β -decay m_{\pi}~800 MeV, m_N~1,600 MeV

Spectrum of light nuclei

NPLQCD Phys.Rev. D87 (2013), 034506

Background field method

Hadron/nuclear energies are modified by presence of fixed/constant external fields

Example: fixed magnetic field

 $\begin{aligned} & \text{landau level} \quad \text{mag. mmt} \\ & E(\vec{B}) = \sqrt{M^2 + (2n+1)|Qe\vec{B}|} - \vec{\mu} \cdot \vec{B} \\ & -2\pi \beta_{M0} |\vec{B}|^2 \\ & \text{mag. polarisability} \end{aligned}$

- Calculations with multiple fields
 extract coefficients of response
 e.g., magnetic moments, polarisabilities, ...
- Not restricted to simple EM fields Axial MEs: uniform axial background field

Axial background field

Example: fixed magnetic field — moments, polarisabilities

Axial MEs: fixed axial background field — axial charges, other matrix elts.

Second order piece: being used for calculations of double-beta decay

Tritium *β*-decay

Simplest semileptonic weak decay of a nuclear system

- Gamow-Teller (axial current) contribution to decays of nuclei not well-known from theory
- Understand multi-body contributions to (GT) better predictions for decay rates of larger nuclei

We calculate $g_A \langle \mathbf{GT} \rangle = \langle {}^{\mathbf{3}} \mathrm{He} | \overline{\mathbf{q}} \gamma_{\mathbf{k}} \gamma_{\mathbf{5}} \tau^{-} \mathbf{q} | {}^{\mathbf{3}} \mathrm{H} \rangle$

Tritium ^β-decay

 Form ratios of compound correlators to cancel leading time-dependence:

$$\frac{\overline{R}_{^{3}\mathrm{H}}(t)}{\overline{R}_{p}(t)} \xrightarrow{t \to \infty} \frac{g_{A}(^{3}\mathrm{H})}{g_{A}} = \langle \mathbf{GT} \rangle$$

Ground state ME revealed through "effective ME plot"

Tritium *β*-decay

- Take combinations to pull out isotensor axial polarisability (two body piece)
- Two-body contribution resolved from zero

Larger nuclei

What about larger (phenomenologically-relevant) nuclei?

- Nuclear effective field theory:
 - I-body currents are dominant
 - 2-body currents are sub-leading but non-negligible

- Determine one body contributions from single nucleon
- Determine few-body contributions from A=2,3,4...
- Match EFT and many body methods to LQCD to make predictions for larger nuclei

Two-body effects

• EM transverse response function shows important two-body effects: ^{12}C at q = 570 MeV

Lovato et al., Phys. Rev. C 91, 062501 (2015)

Expect to be similarly important for axial

Conclusion

- Lattice efforts have potential to impact
 v energy determinations
- Precise determinations with controlled percent-level uncertainties within ~5 years

- Axial and pseudoscalar FFs determined with momenta less than a few GeV
- Large momentum FFs (> GeV) difficult. Novel ideas exist, need testing
- Early results with promising applications
 - Transition FFs Formalism exists but developments still necessary for higher states above $N\pi\pi$ inelastic threshold
 - Application of EFT using 2-, 3- body matrix elements to constrain nuclear effects