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Probability associated with the visible 
units and free energy

 Energy associated with the RBM:

 Probability associated with the visible units:

 Free energy associated with the visible units:
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Score function and mean field

 Score function (no partition function involved):

 Mean field:

 Activation function (invertible):
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Score function associated with the 
model

 Free energy in terms of the activation function:

 Score function associated with the model:
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Loss function

 Score matching:

 Activation function associated with the noisy data (forward equation; 
reparametrisation trick):
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Training and data generation

 Stochastic optimisation:

 Generation, Euler – Maruyama integration, time 
consuming:
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The RBM as a generative diffusion model 
sampler I

 Typically, the score function is learned in a direct manner, 
which implies that the data distribution is not tractable 
and thus necessitates sampling through the use of the 
backward (denoising) equation.

 But in our case, the score function is modelled after the 
free energy of the visible units:
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The RBM as a generative diffusion model 
sampler II

 The RBM can directly sample the generative diffusion model:

 Either with a Gibbs sampling technique

 Or directly with D-Wave in one step:
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Conclusions

 The score function is assimilated to the gradient of the log 
of the free energy of the visible units

 Visible units, mean field, activation (logit)

 Score matching techniques for learning

 The RBM becomes a one-step sampler for the 
diffusion process

 As opposed to the reverse stochastic differential equation, 
which requires hundreds of steps, the generative process 
can be sampled directly from the RBM either with 
Gibbs sampling techniques or with D-Wave
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