Generative diffusion models, retricted Boltzmann machines and quantum computers

Eric Paquet NRC And the state of the state o 5 December 2024

Probability associated with the visible units and free energy

$$
\blacktriangleright \text{ Energy associated with the RBM:}
$$
\n
$$
E(\mathbf{v}, \mathbf{h}) = -\mathbf{v}^\top \mathbf{W} \mathbf{h} - \mathbf{b}^\top \mathbf{v} - \mathbf{c}^\top \mathbf{h}
$$

 Probability associated with the visible units: (\mathbf{v},\mathbf{h}) $\big)$ $\frac{1}{\sqrt{}}\sum_{\rho}^{} -E(\mathbf{v,h})\;=\frac{e^{-F(\mathbf{v,h})}}{e^{-F(\mathbf{v,h})}}\;.$ $(\mathbf{v}) =$ $E(\mathbf{v,h})\;=\frac{e^{-F\mathbf{v}}}{\epsilon}$ Z $p(\mathbf{v}) = \frac{1}{Z} \sum e^{-E}$ Z $-\dot{l}$ $=\frac{1}{Z}\sum_{n}e^{-E({\bf v},{\bf h})}$ = $\frac{e^{i\bf r}}{i\hbar}$ \mathbf{v}^{\prime} \mathbf{h}_j h $\mathbf{v} = \frac{1}{Z} \sum e^{-E(\mathbf{v},t)}$

Free energy associated with the visible units:

Free energy associated with the visible units:
\n
$$
F_{\theta}(\mathbf{v}) = -\mathbf{b}^{\top}\mathbf{v} - \sum_{j=1}^{H} \ln\left(1 + e^{c_j + \mathbf{W}_j^{\top}\mathbf{v}}\right), \quad \theta = \left\{\mathbf{b}, \mathbf{c}, \mathbf{w}\right\}
$$

Score function and mean field

Score function (no partition function involved):

 $\nabla_{\mathbf{v}} \ln p_{\mathbf{\theta}}(\mathbf{v}) = -\nabla_{\mathbf{v}} F_{\mathbf{\theta}}(\mathbf{v})$

Mean field:

 $\left|v_i\right\rangle\rightarrow\left\langle v_i\right\rangle\right\rangle=p\left(\left|v_i\right\rangle=1\right)\in\left[0,1\right]$

Activation function (invertible):

 $a_i = \text{logit}(\langle v_i \rangle) \in \mathbb{R}, \quad \langle v_i \rangle = \sigma(a_i)$

Score function associated with the model

Free energy in terms of the activation function:

$$
v_i \to \langle v_i \rangle = p(v_i = 1) = \sigma(a_i) \Rightarrow
$$

$$
F_{\theta}(\mathbf{a}) = -\mathbf{b}^{\top} \sigma(\mathbf{a}) - \ln \left(1 + e^{c_j + \mathbf{W}_j^{\top} \sigma(\mathbf{a})} \right)
$$

5

Score function associated with the model: $s_{\theta}(\mathbf{a}) = -\nabla_{\mathbf{a}}F_{\theta}(\mathbf{a})$

Loss function

Score matching:

$$
\mathcal{L}(\mathbf{\theta}) = \mathbb{E}_{t, \mathbf{a}_0, \mathbf{a}_t} \left[\left. \lambda(t) \right\| \mathbf{s}_{\mathbf{\theta}}(\mathbf{a}_t, t) - \nabla_{\mathbf{a}_t} \ln p(\mathbf{a}_t \mid \mathbf{a}_0) \right\|_2^2 \right]
$$

 \downarrow

 $\begin{pmatrix} j \ 0,i \end{pmatrix}$

i

j \in j

 $\mathcal{B}|\mathcal{L}_{j\in\mathcal{B}}$

 $\left(\frac{1}{\sqrt{2}} \right)$

 $\sqrt{|\mathcal{B}|} \sum v_{0,i}^{(v)}$ $\left(\left|\mathcal{B}\right|\sum_{j\in\mathcal{B}}\left|^{0,i}\right|\right)$ $\sum_{i=1}^{n}$

- Activation function associated with the noisy data (forward equation; reparametrisation trick):
	- 6 and 10 $\big(\mathbf{a}_t;\mu(\mathbf{a}_0,t),\sigma_t\mathbf{I}\big)$ $a_0 + \sigma_t \zeta$, ζ $\overline{0}$ $_{0}$) = JV $(\mathbf{a}_{t}, \mu(\mathbf{a}_{0}, \theta))$ $\frac{1}{2} \int_0^t \beta(s) ds$ $2¹$ 0 $({\bf a}_0, \! t)$ $\mathbf{a}_t \mid \mathbf{a}_0) = \mathcal{N}\big(\mathbf{a}_t; \mu(\mathbf{a}_0,t), \sigma\big)$ ζ , $\mathcal{S} \sim \mathcal{N}(0, \mathbf{I}) \Rightarrow$ t s $t = c$ $\mathbf{a}_0 + \mathbf{b}_t$ t ds t_{t} t \mathbf{a}_{0}) = JV $(\mathbf{a}_{t}; \mu(\mathbf{a}_{0}, t), \sigma_{t})$ t e $p(\mathbf{a}_{t} \mid \mathbf{a}_{0}) = \mathcal{N}\big(\mathbf{a}_{t}; \mu(\mathbf{a}_{0},t), \alpha\big)$ β l $\mu($ σ_{t} $\mu(\mathbf{a}_0,t),\sigma_t\mathbf{I}$ $-\frac{1}{2}\textcolor{black}{\int_0^{\cdot}}\beta(s)ds\ \mathbf{a}_0\ +\ \sigma_t\boldsymbol{\zeta},\quad \ \boldsymbol{\zeta}\ \sim\ \mathcal{N}(0,\mathbf{I})\Rightarrow$ $=$ \mathbf{a}_0 $\mathbf{a}_{t} \, \sim \, p(\mathbf{a}_{t} \mid \mathbf{a}_{0}) = \, \mathcal{N}\big(\mathbf{a}_{t}; \mu(\mathbf{a}_{0},t), \sigma_{t} \mathbf{I}\big)$ $\mathbf{a}_{t} \simeq e^{-2\int_{0}^{\mathcal{M}\cup\{0\}}}\mathbf{a}_{0} + \sigma_{t}\boldsymbol{\zeta}, \quad \boldsymbol{\zeta}\sim \mathcal{N}(0,\mathbf{I}) =$ $\mu(\mathbf{a}_0,\iota)$ \sim \simeq ${\cal N}$ \mathcal{N} ∣ $a_{0,i}^{\mathcal{B}} = \text{logit} \left| \frac{1}{|\mathcal{B}|} \sum v_{0,i}^{(j)} \right|$

Training and data generation

Stochastic optimisation:

$$
\hat{\theta} = \left\{ \hat{\mathbf{b}}, \hat{\mathbf{c}}, \hat{\mathbf{W}} \right\} = \arg \min_{\mathbf{b}, \mathbf{c}, \mathbf{W}} \mathcal{L}(\mathbf{b}, \mathbf{c}, \mathbf{W})
$$

Training and data generation
 $\hat{\mathbf{\theta}} = \left\{ \hat{\mathbf{b}}, \hat{\mathbf{c}}, \hat{\mathbf{W}} \right\} = \underset{\mathbf{b}, \mathbf{c}, \mathbf{W}}{\arg \min} \mathcal{L}(\mathbf{b}, \mathbf{c}, \mathbf{W})$

Ceneration, Euler - Maruyama integration, time

consuming:
 $\mathbf{a}_{t-1} = \mathbf{a}_t + \left[f(\mathbf{a}_t, t)$ consuming:

7 $\mathbf{a}_{t+1} = \mathbf{a}_t + \left[f(\mathbf{a}_t, t) - g(t)^2 \mathbf{s}_{\hat{\theta}}(\mathbf{a}_t, t) \right] \Delta t + g(t) \sqrt{\Delta t} \zeta, \quad \zeta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathbf{a}_T \rightarrow \mathbf{a}_{T-1} \rightarrow ... \rightarrow \mathbf{a}_0$ $\mathbf{a}_{t-1} = \mathbf{a}_t + \left[f(\mathbf{a}_t, t) - g(t)^2 \mathbf{s}_{\hat{\theta}}(\mathbf{a}_t, t) \right] \Delta t + g(t) \sqrt{\Delta t} \zeta, \quad \zeta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $p(v_i = 1) = \langle v_i \rangle = \sigma(a_{0,i}), \quad \mathbb{R} \to [0,1]$

The RBM as a generative diffusion model sampler I

- **Typically, the score function is learned in a direct manner,** which implies that the data distribution is not tractable and thus necessitates sampling through the use of the backward (denoising) equation.
- But in our case, the score function is modelled after the free energy of the visible units:

 $\mathbf{s}_{\mathbf{A}}(\mathbf{a}) = -\nabla_{\mathbf{a}}F_{\mathbf{A}}(\mathbf{a})$

8 | **1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990**

The RBM as a generative diffusion model sampler II

The RBM can directly sample the generative diffusion model:

the RBM as a generative diffusion model

\nThe RBM can directly sample the generative diffusion model:

\n
$$
\hat{\theta} = \{\hat{\mathbf{b}}, \hat{\mathbf{c}}, \hat{\mathbf{W}}\} \Rightarrow F_{\hat{\theta}}(\mathbf{a}) \Rightarrow F_{\hat{\theta}}(\langle \mathbf{v} \rangle) \Rightarrow
$$
\n
$$
P_{\hat{\theta}}(\langle \mathbf{v} \rangle) = \frac{e^{-F_{\hat{\theta}}(\langle \mathbf{v} \rangle)}}{Z} \Rightarrow P_{\hat{\theta}}(\mathbf{v}) \approx \frac{e^{-F_{\hat{\theta}}(\mathbf{v})}}{Z} \Rightarrow \mathbf{v} \sim p_{\hat{\theta}}(\mathbf{v})
$$
\nEither with a Gibbs sampling technique

9 | **1980 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990 | 1990**

Either with a Gibbs sampling technique

 Or directly with D-Wave in one step: $\mathbf{v} \sim \Psi(\hat{\mathbf{\theta}})$ $\mathbf{\hat{\Theta}}$

Conclusions

- \triangleright The score function is assimilated to the gradient of the log of the free energy of the visible units
- Visible units, mean field, activation (logit)
- Score matching techniques for learning
- **The RBM becomes a one-step sampler for the** diffusion process
- \triangleright As opposed to the reverse stochastic differential equation, which requires hundreds of steps, the generative process can be sampled directly from the RBM either with Gibbs sampling techniques or with D-Wave