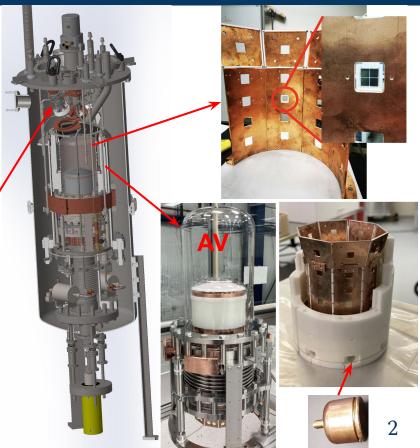
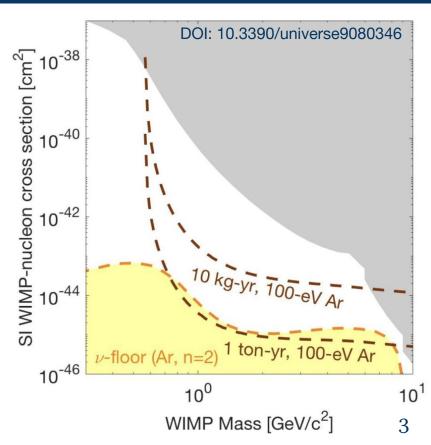
SBC-SNOLAB: Material Radiopurity Program

Gary Sweeney Queen's University

> WNPPC 2025 Banff, Alberta



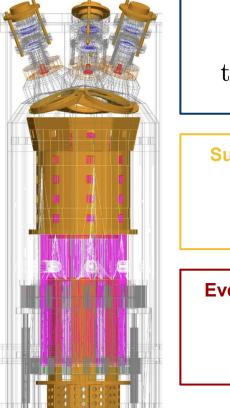
The Scintillating Bubble Chamber

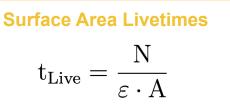

Ð

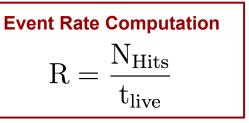
- Liquid argon (LAr) target maintained at 130 K and 30 psi → 100 eV nucleation threshold (see Carter Garrah's talk).
- LAr doped with O(10-100) ppm of Xe: $\lambda = 128 \rightarrow 175 \text{ nm} \Rightarrow \text{high transmission.}$
- 32 LAr-facing FBK VUV-HD3 SiPMs to observe scintillation signals.
- 3 cameras to achieve mm-scale bubble position reconstruction.
- 8 PZT transducers to "listen" to the bubble signatures $\rightarrow \alpha$ -rejection [arXiv:0807.1536]

SBC-SNOLAB: Physics Reach

- Nuclear recoils (NRs) above 100 eV_{NR} are expected to nucleate a bubble.
- Scintillation veto for deposits > 50 keV_{NR}.
- Region of interest (ROI): 0.1 50 keV_{NR}.
- ROI corresponds to 1 10 GeV/c² WIMP mass.
- **Expected WIMP signal**: single bubble with minimal scintillation light.
- 10 kg-yr LAr target capable of 10⁻⁴³ cm² at 1 GeV/c² (can use other targets for SI/SD).

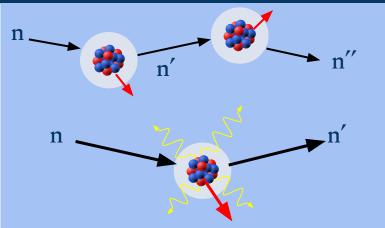



Computing Background Rates with MC Simulations



- Monte Carlo (MC) simulations used to predict background event rates (R).
- Propagate N simulated particles through the detector and observe hits in the active volume $\rightarrow N_{Hits}$.
- Event rates estimated by N_{Hits} and simulated livetime (t_{Live}).
- t_{Live} → time taken for a certain material or component to emit N events.
- Livetime dependent on material activity
 (α) and production rates (Γ/ε).

Bulk Livetimes
$$t_{\rm Live} = \frac{\rm N}{\Gamma \cdot {\rm M} \cdot \alpha} \label{eq:time}$$

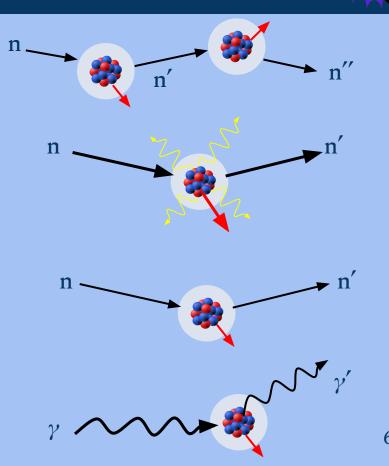


Particle Backgrounds in Superheated LAr

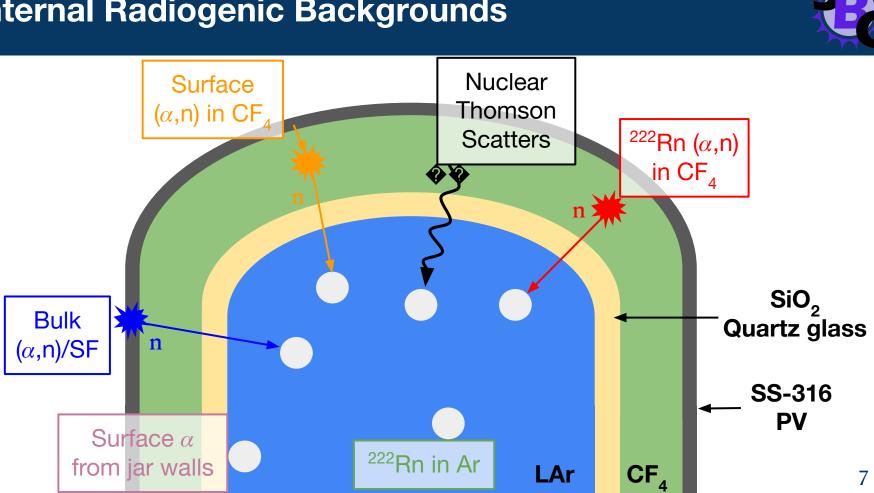
P

Can be Vetoed:

- Multi-scatter events \rightarrow WIMP xs too low.
- Deposits > 50 keV_{NR} \rightarrow scintillation light.
- Alpha-scatters \rightarrow scintillation + acoustics.


Particle Interactions in Superheated LAr

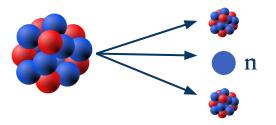
Can be Vetoed:


- Multi-scatter events \rightarrow WIMP xs too low.
- Deposits > 50 keV_{NR} \rightarrow scintillation light.
- Alpha-scatters \rightarrow scintillation + acoustics.

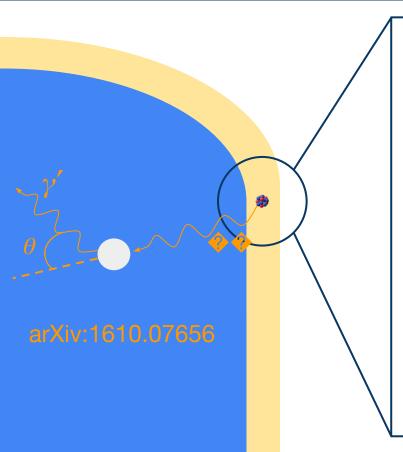
WIMP-like Events:

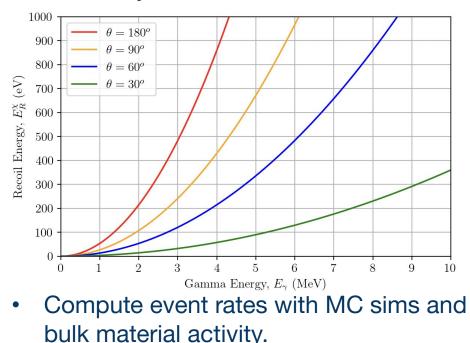
- Single-site NRs in the ROI: neutron capture recoils and inelastic scatters.
- Nuclear Thomson scatters \rightarrow single site NRs from MeV-scale γ s.

Internal Radiogenic Backgrounds

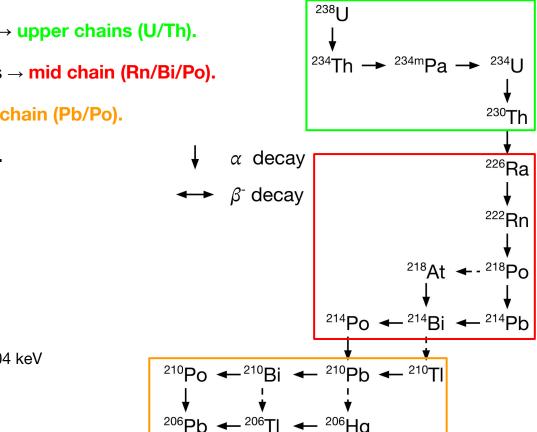

Internal Backgrounds – Bulk Neutrons

$$\alpha + {^{\mathrm{A}}_{\mathrm{Z}}}\mathrm{X} \rightarrow {^{\mathrm{A}+4}_{\mathrm{Z}+2}}\mathrm{X} \rightarrow {^{\mathrm{A}+3}_{\mathrm{Z}+2}}\mathrm{X} + n$$


• Spont. Fission \rightarrow Upper Th/U chains.


- Estimate neutron energy spectra and production rates using SOURCES-4C¹.
- Compute event rates with MC simulations and bulk activity measurements.

Internal Backgrounds – MeV Scale Gammas

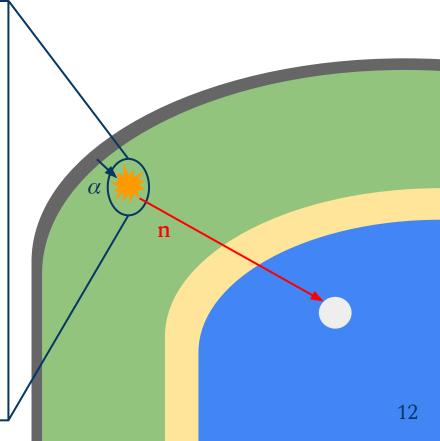

• Small chance MeV-scale gammas can elastically scatter off nuclei .

Internal Backgrounds – Bulk Activity

10

- Mass spectroscopy: ICP-MS/GDMS \rightarrow upper chains (U/Th).
- Rn-emanation: Rn-traps + Lucas cells \rightarrow mid chain (Rn/Bi/Po).
- Surface alpha counting: XIA \rightarrow lower chain (Pb/Po).
- Gamma counting: HPGe \rightarrow full chain.
 - ²³²Th:
 - o ²²⁸Ac: 911 keV
 - ²¹²Pb: 239 and 300 keV
 - ²⁰⁸TI: 583 and 2614 keV
 - 238 U upper chain (238 U \rightarrow 226 Ra):
 - o ²²⁶Ra: 186 keV
 - 238 U lower chain (222 Rn $\rightarrow ^{206}$ Pb):
 - ²¹⁴Pb: 295 and 352 keV
 - ²¹⁴Bi: 609, 1120, 1764 and 2204 keV
 - ²³⁵U:
 - ²³⁵U: 144, 163 and 205 keV

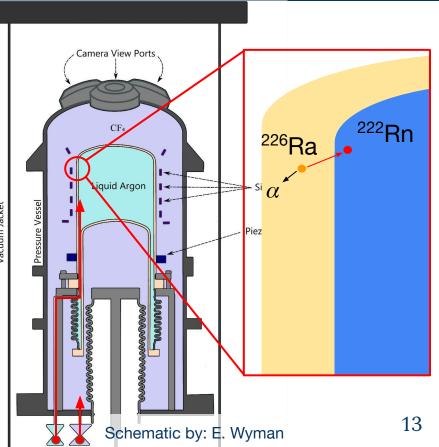
(Some) Material Bulk Activities


Component	Mass Counted [kg]	²³² Th [mBq/kg]	²³⁸ U _{Up} [mBq/kg]	²³⁸ U _{Low} [mBq/kg]	²³⁵ U [mBq/kg]	²¹⁰ Pb [mBq/kg]
OFHC Copper	1.5117	< 1.03	30.31 ± 15.16	< 0.15	< 0.22	5732.1 ± 3936
SS-316	1.6952	15.84 ± 1.97	< 42.9	4.94 ± 0.86	< 0.57	< 36428
SS Bolts	0.7449	3.42 ± 1.10	< 63.11	< 1.40	< 0.79	< 38239
HDPE	0.6866	2.85 ± 0.66	< 25.16	15.63 ± 0.94	< 0.26	< 860.70
Cirlex PCBs	0.0107	< 42.74	< 339.20	< 7.47	< 11.52	< 19240
FBK SiPMs	0.0135	< 6.48	< 15.80	< 2.03	< 1.24	< 263.40
Fused Silica	0.0321	13.90 ± 5.16	58.72 ± 31.83	< 0.45	< 0.92	< 1175

Components counted by the SNOLAB Low Background group using HPGe detectors.

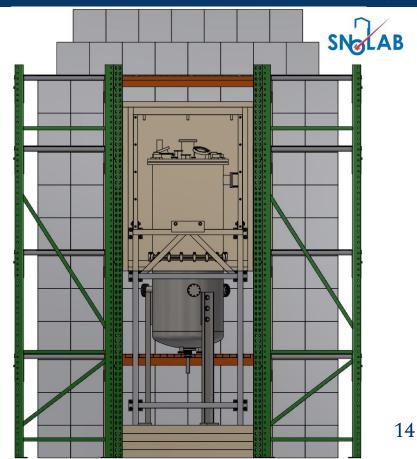
Internal Backgrounds – (α ,n) in CF₄

- Large (α ,n) cross-sections on ¹⁹F & ¹³C are problematic.
- α-decay from surfaces adjacent to CF₄ can result in neutron production.
- Estimate the α -emissivity by counting material samples with XIA at SNOLAB.
- Emissivity measured as a function of surface area [α · s⁻¹ · cm⁻²].
- Neutron production rate and energy spectra estimated using NEUCBOT².



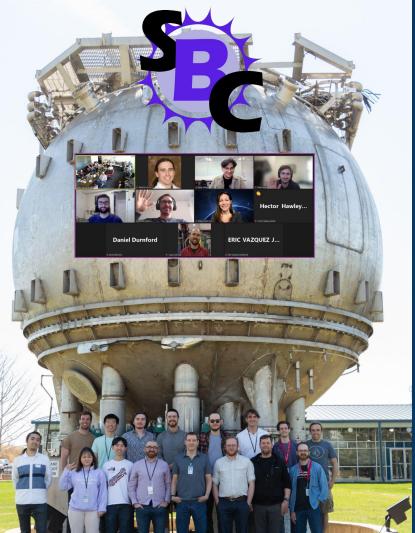
• Radon diffusion is suppressed from cryogenic temperatures.

Radon Control


- Emanation is still possible from O(um) deep emissions (Ra-decay) in surrounding materials.
 - Materials in contact with CF₄ and argon to be measured for Rn emanation.
- Radon can also seep in through warm areas → gas handling systems (GHS).
 - GHS fit with Rn-traps to remove radon before entering active areas.
- Activity limits currently under investigation.

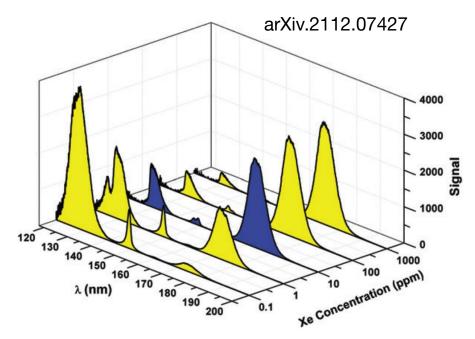
Summary and Outlook

- Material selection is essential for rare event searches → minimize internal backgrounds.
- SBC has a very mature radiopurity program with majority of materials gamma counted and alpha counted.
- External shield design well underway with hopes to begin construction and operation in 2026.
- Exciting time for both SBC-LAr10 and SBC-SNOLAB!



Thank you!

Merci!



¹W. Wilson et al., Sources: A code for calculating (alpha, n), spontaneous fission, and delayed neutron sources and spectra, Progress in Nuclear Energy 51, 608 (2009).

²S. Westerdale and P. Meyers, *Radiogenic neutron yield calculations for low-background experiments*, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 875, 57–64 (2017).

Purpose and Effects of Xenon Doping

- Argon scintillation light is really hard to transmit through fused silica → doping with xenon shifts peak from 128 nm to 175 nm.
- FBK VUV-HD3 SiPMs have high sensitivity at 175 nm.
- Also expected to slightly improve the scintillation light yield
- SBC is aiming for a doping level of 10-100 ppm of xenon → optimize xenon emissions.
- Potential for PSD capabilities to add another method of veto (ER vs NR).

