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The Scintillating Bubble Chamber
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• Liquid argon (LAr) target maintained at 
130 K and 30 psi → 100 eV nucleation 
threshold (see Carter Garrah’s talk).

• LAr doped with O(10-100) ppm of Xe:
𝜆 = 128 → 175 nm ⇒ high transmission.

• 32 LAr-facing FBK VUV-HD3 SiPMs to 
observe scintillation signals.

• 3 cameras to achieve mm-scale bubble 
position reconstruction.

• 8 PZT transducers to “listen” to the bubble 
signatures → 𝛼-rejection [arXiv:0807.1536]
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SBC-SNOLAB: Physics Reach
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• Nuclear recoils (NRs) above 100 eVNR
 are 

expected to nucleate a bubble. 
 

• Scintillation veto for deposits > 50 keVNR. 
 

• Region of interest (ROI): 0.1 – 50 keVNR.
 

• ROI corresponds to 1 – 10 GeV/c2 WIMP 
mass.

• Expected WIMP signal: single bubble with 
minimal scintillation light.

 
• 10 kg-yr LAr target capable of 10-43 cm2 at 

1 GeV/c2 (can use other targets for SI/SD).

DOI: 10.3390/universe9080346



Computing Background Rates with MC Simulations

• Monte Carlo (MC) simulations used to 
predict background event rates (R).
 

• Propagate N simulated particles 
through the detector and observe 
hits in the active volume → NHits. 
 

• Event rates estimated by  NHits and 
simulated livetime (tLive).
 

• tLive → time taken for a certain material 
or component to emit N events. 

• Livetime dependent on material activity 
(𝛼) and production rates (𝛤/𝜀).

Bulk Livetimes

Surface Area Livetimes

Event Rate Computation
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Particle Backgrounds in Superheated LAr
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Can be Vetoed:

• Multi-scatter events → WIMP xs too low.
 

• Deposits > 50 keVNR → scintillation light.
 

• Alpha-scatters → scintillation + acoustics.



Particle Interactions in Superheated LAr
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Can be Vetoed:

• Multi-scatter events → WIMP xs too low.
 

• Deposits > 50 keVNR → scintillation light.
 

• Alpha-scatters → scintillation + acoustics.

WIMP-like Events:

• Single-site NRs in the ROI: neutron 
capture recoils and inelastic scatters.
 

• Nuclear Thomson scatters → single site 
NRs from MeV-scale 𝛾s.  



Internal Radiogenic Backgrounds
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Internal Backgrounds – Bulk Neutrons
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• (𝛼,n) → Most dominant.
 
 

• Spont. Fission → Upper Th/U chains.
 
 
 
 
 

• Estimate neutron energy spectra and 
production rates using SOURCES-4C1.
 

• Compute event rates with MC simulations 
and bulk activity measurements. 
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Internal Backgrounds – MeV Scale Gammas
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• Small chance MeV-scale gammas can 
elastically scatter off nuclei .
 

 
 
 

• Compute event rates with MC sims and 
bulk material activity.
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arXiv:1610.07656



Internal Backgrounds – Bulk Activity

• Mass spectroscopy: ICP-MS/GDMS → upper chains (U/Th).

• Rn-emanation: Rn-traps + Lucas cells → mid chain (Rn/Bi/Po).

• Surface alpha counting: XIA → lower chain (Pb/Po).

• Gamma counting: HPGe → full chain.

・ 232Th:
○ 228Ac: 911 keV
○ 212Pb: 239 and 300 keV
○ 208Tl: 583 and 2614 keV

・ 238U upper chain (238U → 226Ra):
○ 226Ra: 186 keV

・ 238U lower chain (222Rn → 206Pb):
○ 214Pb: 295 and 352 keV
○ 214Bi: 609, 1120, 1764 and 2204 keV

・ 235U:
○ 235U: 144, 163 and 205 keV 10



(Some) Material Bulk Activities
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Component
Mass 

Counted
[kg]

232Th 
[mBq/kg]

238UUp
[mBq/kg]

238ULow
[mBq/kg]

235U
[mBq/kg]

210Pb
[mBq/kg]

OFHC Copper 1.5117 < 1.03 30.31 ± 15.16 < 0.15 < 0.22 5732.1 ± 3936

SS-316 1.6952 15.84 ± 1.97 < 42.9 4.94 ± 0.86 < 0.57 < 36428

SS Bolts 0.7449 3.42 ± 1.10 < 63.11 < 1.40 < 0.79 < 38239

HDPE 0.6866 2.85 ± 0.66 < 25.16 15.63 ± 0.94 < 0.26 < 860.70

Cirlex PCBs 0.0107 < 42.74 < 339.20 < 7.47 < 11.52 < 19240

FBK SiPMs 0.0135 < 6.48 < 15.80 < 2.03 < 1.24 < 263.40

Fused Silica 0.0321 13.90 ± 5.16 58.72 ± 31.83 < 0.45 < 0.92 < 1175

Components counted by the SNOLAB Low Background group using HPGe detectors.



Internal Backgrounds – (𝛼,n) in CF4

• Large (𝛼,n) cross-sections on 19F & 13C 
are problematic.

• 𝛼-decay from surfaces adjacent to CF4 
can result in neutron production.

• Estimate the 𝛼-emissivity by counting 
material samples with XIA at SNOLAB.
 

• Emissivity measured as a function of 
surface area [𝛼 · s-1 · cm-2].
 

• Neutron production rate and energy 
spectra estimated using NEUCBOT2.

n
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Radon Control
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● Radon diffusion is suppressed from 
cryogenic temperatures.

● Emanation is still possible from O(um) 
deep emissions (Ra-decay) in surrounding 
materials.

∙ Materials in contact with CF4
 and argon to 

be measured for Rn emanation.

● Radon can also seep in through warm 
areas → gas handling systems (GHS).

∙ GHS fit with Rn-traps to remove radon before 
entering active areas.

● Activity limits currently under investigation.

𝛼

226Ra
222Rn

Schematic by: E. Wyman 



Summary and Outlook

14

● Material selection is essential for rare 
event searches → minimize internal 
backgrounds.

● SBC has a very mature radiopurity 
program with majority of materials 
gamma counted and alpha counted.
 

● External shield design well underway 
with hopes to begin construction and 
operation in 2026. 
 

● Exciting time for both SBC-LAr10 and 
SBC-SNOLAB! 



Thank 
you!

Merci!
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Purpose and Effects of Xenon Doping
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● Argon scintillation light is really hard to 
transmit through fused silica → doping with 
xenon shifts peak from 128 nm to 175 nm.
 

● FBK VUV-HD3 SiPMs have high sensitivity at 
175 nm.
 

● Also expected to slightly improve the 
scintillation light yield
 

● SBC is aiming for a doping level of 10-100 
ppm of xenon → optimize xenon emissions.
 

● Potential for PSD capabilities to add another 
method of veto (ER vs NR).

arXiv.2112.07427


