

Scintillating Bubble Chamber

Rare Event Searches with SBC

Carter Garrah

February 14, 2025

WNPPC 2025

Bubble Chambers

- Threshold detectors which maintain a superheated target fluid
- Sufficient energy deposition results in bubble formation (acoustic/pressure + visual signal)
- Insensitive to β and γ particles

Liquid-Noble Bubble Chambers

- Freon target:
 - Purely threshold detectors (no energy information)
 - Becomes sensitive to β and γ at low-thresholds
- Liquid-noble target:
 - Scintillation signal
 - Improved β and γ
 suppression at low
 thresholds

The Scintillating Bubble Chamber

Carter Garrah

- First demonstration with a 30-g bubble chamber with a liquid xenon target; single event readout for x3 sensory channels

The Scintillating Bubble Chamber

- First demonstration with a 30-g bubble chamber with a liquid xenon target; single event readout for x3 sensory channels

- x2 nearly identical SBC detectors:
 - SBC-LAr10
 - SBC-SNOLAB
- 10 kg LAr doped with Xe
- 100 eV nuclear recoil threshold
- Chamber operated at 130 K and 30 psi

SBC-LAr10 Render of Inner/Outer Vessel

- x2 nearly identical SBC detectors:
 - SBC-LAr10
 - SBC-SNOLAB
- 10 kg LAr doped with Xe
- 100 eV nuclear recoil threshold
- Chamber operated at 130 K and 30 psi

SBC-LAr10 Render of Inner/Outer Vessel

SBC: Detector Design

- x2 nearly identical
 SBC detectors:
 - SBC-LAr10
 - SBC-SNOLAB
- 10 kg LAr doped with Xe
- 100 eV nuclear recoil threshold
- Chamber operated at 130 K and 30 psi

Inner Chamber Schematic

SBC-LAr10 @ Fermilab

- First of two identical detectors being developed simultaneously; being commissioned right now!
- Physics goals:
 - Detector gamma calibration
 - Development prototyping for SNOLAB chamber

Fermilab

SBC-LAr10 @ Fermilab

SBC-SNOLAB

- Second detector, currently being developed at Queen's University
- Physics goals:
 - WIMP / particle dark matter search in low-background environment
 - Improved shielding and background mitigation (see talk: Gary Sweeney)

SBC-SNOLAB

SBC-SNOLAB: Data Acquisition Prep @ Queen's

- Signal reconstruction includes streaming three types of data channels:
 - 1. Positional Reconstruction: x3 Arducam Cameras
 - 2. Acoustic Signal: x8 Piezo Transducers
 - 3. Scintillation Signal: x48 FBK SiPMs

- Event timing blueprint laid out in LXe test-chamber methodology (slide 4)
- Sensors and triggers operated via an electronics cabinet containing power supplies, DAQs, and readout systems including PLC-based PC (Beckhoff)

PLC and Electronics Cabinet

WNPPC 2025

- Fermilab chamber currently being commissioned: expect data this year!
- SNOLAB chamber work ongoing; above-ground assembly to begin soon
- Plans for scaling up to a tonne-scale detector post-SNOLAB with potential for v-floor sensitivity

Universidad Nacional Autónoma de México

Northwestern University

UC Santa Barbara

‡ Fermilab

Université **M** de Montréal

UC RIVERSIDE

