Contribution ID: 6 Type: Contributed Oral

The first measurement of the 0^+_3 lifetime in $^{120}{\rm Sn}$ using thermal neutron capture

Thursday, 13 February 2025 20:15 (15 minutes)

The semi-magic $^{120}_{50}$ Sn₇₀ lies in the neutron mid-shell among the other stable Sn isotopes, where shape coexistence was observed with the signature of deformed 2p-2h bands built on excited 0^+ states intruding into the yrast band that is built on the spherical ground state. However, the lifetime of the excited 0^+_3 only has a lower limit of 6 ps in the literature, which prevents the study of transition strengths, and as a result, its structure is obscured.

The 0_3^+ lifetime was measured in the first thermal neutron capture experiment, $^{119}{\rm Sn}({\rm n},\gamma^{\rm many})^{120}{\rm Sn}$, at the Institut Laue-Langevin, where the world's highest-flux thermal neutron beam was delivered at 10^8 n/cm²/s at the target position on an isotopically enriched $^{119}{\rm Sn}$ target. Low-spin states in $^{120}{\rm Sn}$ were populated up to the neutron separation energy $S_n=9.1$ MeV, and the decaying gamma-ray cascades were detected with the Fission Product Prompt Gamma-ray Spectrometer (FIPPS) comprised of eight Compton-suppressed HPGe clovers coupled to an array of 15 LaBr₃(Ce) scintillation detectors. The LaBr₃(Ce) scintillators, which were used for gamma-ray detection and lifetime measurement using the Generalized Centroid Difference (GCD) method, have fast timing responses and are ideal for extracting lifetimes between 10 and a few hundred ps.

In total, there are 4.3×10^9 counts in the $\gamma \gamma \gamma$ cube where two LaBr₃(Ce) events were in coincidence with one HPGe following 14 days of beam on target.

Lifetime measurement for the 0^+_3 state in 120 Sn using the GCD technique will be presented. Additional lifetimes will also be measured where the $\gamma\gamma\gamma$ cascade's statistics permit, and detailed gamma-ray spectroscopy will be performed using the FIPPS data to significantly extend the 120 Sn level scheme.

Your Email

twa73@sfu.ca

Affiliation

Simon Fraser University

Supervisor

Corina Andreoiu

Supervisor Email

caa12@sfu.ca

Your current academic level

PhD student

Primary authors: ANDREOIU, Corina (Simon Fraser University); PETRACHE, Costel (University Paris-Saclay and IJClab, CNRS/IN2P3, 91405 Orsay, France); WU, Frank (Tongan) (Simon Fraser University)

Presenter: WU, Frank (Tongan) (Simon Fraser University) **Session Classification:** Evening 1 - Nuclear physics

Track Classification: Nuclear Structure