Contribution ID: 8

HVP Contributions to Muon g - 2: **QCD Constraints** Using Inequalities and Sum Rules

Sunday, 16 February 2025 11:30 (15 minutes)

Fermilab's 2023 measurement of the muon's anomalous magnetic moment $(a_{\mu} = (g-2)_{\mu}/2)$ has heightened the discrepancy between experimental results and Standard Model predictions to 5.0σ . By employing the structure of finite-energy QCD sum rules (FESR) and H\"older inequalities, the hadronic vacuum polarization (HVP) contribution to the leading order (LO) muon g-2 anomaly $(a_{\mu}^{\text{HVP},\text{LO}})$ can be constrained. These constraints help bridge the gap between lattice QCD and data-driven values. Upper and lower bounds on $a_{\mu}^{\text{HVP},\text{LO}}$ are constructed and evaluated up to five-loop order in perturbation theory in chiral limit, LO in lightquark mass corrections, next-to-leading order in dimension-four QCD condensates, and LO in dimension-six QCD condensates.

Your Email

siyuan.li@usask.ca

Affiliation

University of Saskatchewan

Supervisor

Tom Steele

Supervisor Email

tom.steele@usask.ca

Your current academic level

PhD student

Primary authors: LI, Siyuan (University of Saskatchewan); Prof. STEELE, Tom (University of Saskatchewan); Prof. HO, Jason (Dordt University); Prof. KLEIV, Robin T. (Thompson Rivers University); RAZA, R; WILLIAMS, K

Presenter: LI, Siyuan (University of Saskatchewan)

Session Classification: Morning 6 - QCD and Hadrons

Track Classification: QCD and Hadrons