FROM SPIN TO STRUCTURE

Beam Spin Asymmetry in Exclusive Pion Electroproduction

Alicia Postuma

WNPPC 2025

University of Regina Jefferson Lab KaonLT/PionLT Collaboration

- Many unknowns in theory of strong force
- Meson electroproduction in Jefferson Lab Hall C probes hadron structure
- Use observables to study non-perturbative QCD in the transition regime

Theoretical Approaches

Compare observables to Regge and GPD models = test **relevant degrees of freedom** at given kinematics

Beam Spin Asymmetry

3

$$A_{LU} = \frac{1}{P} \left(\frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \right)$$

Difference in cross-sections based on helicity (±1) of the incident electron

A. Bacchetta et al. Phys. Rev. D 70, 117504 (2004). M. Diehl and S. Sapeta. Eur. Phys. J. C 41, 515-533 (2005).

Beam Spin Asymmetry

3

$$A_{LU} = \frac{1}{P} \left(\frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \right) \propto \frac{\sigma_{LT'}}{\sigma_0}$$

- Difference in cross-sections based on helicity (±1) of the incident electron
- Caused by interference between transversely and longitudinally polarized virtual photons γ^*

A. Bacchetta et al. Phys. Rev. D 70, 117504 (2004). M. Diehl and S. Sapeta. Eur. Phys. J. C 41, 515-533 (2005).

Beam Spin Asymmetry

$$A_{LU} = \frac{1}{P} \left(\frac{Y^+ - Y^-}{Y^+ + Y^-} \right) \propto \frac{\sigma_{LT'}}{\sigma_0}$$

- Difference in cross-sections based on helicity (±1) of the incident electron
- Caused by interference between transversely and longitudinally polarized virtual photons
- Acceptances cancel in a ratio

My research: asymmetry analysis of the reaction:

$$e^- + p \longrightarrow e^{-\prime} + \pi^+ + n$$

Extraction of $\sigma_{LT'}/\sigma_0$ over a range of kinematics

M. Diehl and S. Sapeta. Eur. Phys. J. C 41, 515-533 (2005).

 $\mathbf{Q^2}$: 4-momentum of γ^*

x_{*B*}: momentum fraction of struck parton

-t: 4-momentum transfer from γ^* to meson

 $\epsilon: \ \mbox{longitudinal to transverse} \ \gamma^* \ \mbox{flux ratio} \label{eq:expansion}$

 \mathbf{Q}^2 : 4-momentum of γ^* $Q^2 = -(\mathbf{p}_e - \mathbf{p}'_e)^2$

 \mathbf{x}_{B} : momentum fraction of struck parton

-t: 4-momentum transfer from γ^* to meson

 $\epsilon: \ \mbox{longitudinal to transverse} \ \gamma^* \ \mbox{flux ratio}$

 \mathbf{Q}^2 : 4-momentum of γ^* $Q^2 = -(oldsymbol{p}_e - oldsymbol{p}'_e)^2$

x_B: momentum fraction of struck parton

$$x_B = \frac{Q^2}{2\boldsymbol{p}_p \cdot \boldsymbol{p}_{\gamma^*}}$$

-t: 4-momentum transfer from γ^* to meson

 $\epsilon :$ longitudinal to transverse γ^* flux ratio

Q²: 4-momentum of γ^* $Q^2 = -(\pmb{p}_e - \pmb{p}'_e)^2$

x_{*B*}: momentum fraction of struck parton

$$x_B = \frac{Q^2}{2\boldsymbol{p}_p \cdot \boldsymbol{p}_{\gamma^*}}$$

-t: 4-momentum transfer from γ^* to meson

 $-t=-(oldsymbol{p}_{\gamma^*}-oldsymbol{p}_{\pi})^2$

 $\epsilon :$ longitudinal to transverse γ^* flux ratio

 \mathbf{Q}^2 : 4-momentum of γ^* $Q^2 = -(oldsymbol{p}_e - oldsymbol{p}'_e)^2$

x_{*B*}: momentum fraction of struck parton

$$x_B = \frac{Q^2}{2\boldsymbol{p}_p \cdot \boldsymbol{p}_{\gamma^*}}$$

-t: 4-momentum transfer from γ^* to meson

 $-t=-(oldsymbol{p}_{\gamma^*}-oldsymbol{p}_{\pi})^2$

 $\epsilon :$ longitudinal to transverse γ^* flux ratio

Welcome to Hall C!

Hall C: electron beam \rightarrow fixed target \rightarrow spectrometers

- $\blacksquare Spectrometers are magnetic and moveable \rightarrow choose charge, momentum, and angles to detect$
- Coincidence experiment: need simultaneous detection in High Momentum Spectrometer and Super HMS

Welcome to Hall C!

$\blacksquare Hall C: electron beam \rightarrow fixed target \rightarrow spectrometers$

- $\blacksquare Spectrometers are magnetic and moveable \rightarrow choose charge, momentum, and angles to detect$
- Coincidence experiment: need simultaneous detection in High Momentum Spectrometer and Super HMS

Particle Identification (PID)

- Spectrometer detector stack contains drift chambers for tracking, hodoscopes for triggering, threshold Cherenkovs and calorimeter for PID
- Fixed charge, momentum: PID via mass separation
- $\rightarrow\,$ Choose index of refraction to distinguish between particles

Event Selection

$$e^- + p \rightarrow e^{-\prime} + \pi^+ + n$$

- Select coincidences via $t_{COIN} = t_{HMS} t_{SHMS} \approx 0$
- Neutron not detected ightarrow use missing mass $m_X pprox m_N$

$$m_X^2 = (\boldsymbol{p}_e + m_p - \boldsymbol{p}_{e\prime} - \boldsymbol{p}_{\pi})^2$$

Subtract random time sample, empty target background

Asymmetry $Q^2=2.1$ GeV², $x_B = 0.21$

Asymmetry $Q^2 = 3.0 \text{ GeV}^2$, $x_B = 0.40$

Systematic Errors

1. Fitting Error

- Difference in σ_{LT'}/σ₀ extracted using full (solid line) or approximated (dashed) fit
- Has a direction → total systematic error asymmetric
- 2. Cut Dependence
 - $\sigma_{LT'}/\sigma_0$ varies with exact values of missing mass and coincidence time cuts
- 3. Beam Polarization
 - $\blacksquare \ P = 89^{+1}_{-3}\% \rightarrow \text{Propagate to} \\ \sigma_{LT'}/\sigma_0$

Results

S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 65 137 (2010).
 B. Berthou et al, Eur. Phys. J. C 78 478 (2018).
 T. Vrancx, J. Ryckebusch & J. Nys, Phys. Rev C, 89 065202 (2014).
 S. Diehl et al., Phys. Lett. B 839, 137761 (2023).
 T. K. Choi, K.-J. Kong & B.-G. Yu, J. Korean Phys. Soc. 67, 1089-1094 (2015).

Comparison with Theory (2)

Best overall agreement is **YCK1**: Regge model with GPD parametrization of nucleon electromagnetic form factors (EMFFs)

S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 65 137 (2010).
 B. Berthou et al, Eur. Phys. J. C 78 478 (2018).
 T. Vrancx, J. Ryckebusch & J. Nys, Phys. Rev C, 89 065202 (2014).
 S. Diehl et al., Phys. Lett. B 839, 137761 (2023).
 T. K. Choi, K.-J. Kong & B.-G. Yu, J. Korean Phys. Soc. 67, 1089-1094 (2015).

Measurements of \$\sigma_{LT'}\$/\$\sigma_0\$ from KaonLT, CLAS, and CLAS12
 KaonLT data extends kinematic range with finer t-binning
 Combine to determine \$\mathbb{Q}^2\$ dependence at fixed \$(x_B, -t)\$)

S. Diehl et al., Phys. Rev. Lett. 125, 182001 (2020).

Q² **Dependence (New!)**

σ_{LT'}/σ₀ from KaonLT, CLAS, and CLAS12 as a function of Q²
 Flat or weak Q² dependence

S. Diehl et al., Phys. Lett. B 839, 137761 (2023). S. Diehl et al., Phys. Rev. Lett. 125, 182001 (2020). T. K. Choi, K.-J. Kong & B.-G. Yu, J. Korean Phys. Soc. 67, 1089-1094 (2015).

Physics Interpretation

CLAS12 conclusions: best fit is GK2 (GPD H_T *2)

 \rightarrow GPD picture applicable

KaonLT conclusions: best fit is YCK1 (Regge + GPD EMFF)

- Our measured $\sigma_{LT'}/\sigma_0$ is not explained by only quark and gluon degrees of freedom
- Hadronic degrees of freedom may be more relevant
- **TYCK1** uses GPDs in EMFF parametrization \rightarrow hybrid approach?
- ★ Need model-independent tests of GPD picture (see next talk)

S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 65 137 (2010).
 B. Berthou et al, Eur. Phys. J. C 78 478 (2018).
 T. Vrancx, J. Ryckebusch & J. Nys, Phys. Rev C, 89 065202 (2014).
 S. Diehl et al., Phys. Lett. B 839, 137761 (2023).
 T. K. Choi, K.-J. Kong & B.-G. Yu, J. Korean Phys. Soc. 67, 1089-1094 (2015).

- Measured A_{LU} in $e + p \rightarrow e' + \pi^+ + n$ and extracted $\sigma_{LT'} / \sigma_0$ from KaonLT data over range of kinematics
- No exact agreement with predictions, closest is YCK1 (Regge + GPD EMFF)
- Flat or weak Q^2 dependence of $\sigma_{LT'}/\sigma_0$
- Manuscript being prepared for Physics Letters B

Precision data of hadronic reaction observables critical for proton structure and the strong force!

Acknowledgements

KaonLT/PionLT Collaboration:

Dave Gaskell^{*}, Nathan Heinrich, Garth Huber^{*}, Tanja Horn^{*}, Muhammad Junaid, Stephen Kay, Vijay Kumar, Pete Markowitz^{*}, Alicia Postuma, Julie Roche, Richard Trotta, Ali Usman

CINP 2023-2024 Graduate Fellowship NSERC SAPIN-2021-00026 NSF PHY 2309976, 2012430, 1714133 NSF PHY 2209199

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

This research was carried out at the University of Regina, on what is Treaty 4 land and the territories of the nêhiyawak, Anihšināpēk, Dakota, Lakota, Nakoda, and the Métis/Michif Nation.

EXTRA SLIDES

What If...

■ No Q² dependence → overlay curves at same x_B
 ■ Seems to show same -t dependence within uncertainties

CLAS12 Results

GK (default) GK (H_T *1.5) GK (H_T *2) JML (Regge) GK (no pion pole)

S. Diehl et al., Phys. Lett. B 839, 137761 (2023). arXiv:2210.14557

Quick Derivation

Define the beam spin asymmetry A_{LU} as:

$$A_{LU} = \frac{1}{P} \left(\frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \right) = \frac{1}{P} \left(\frac{Y^+ - Y^-}{Y^+ + Y^-} \right)$$

Polarized cross-section in Rosenbluth equation appears when separating events by helicity:

$$2\pi \frac{d^2\sigma}{dtd\phi} = \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT'}}{dt} \sin\phi$$

Beam spin asymmetry provides much cleaner access to $\sigma_{LT'}$:

$$A_{LU} = \frac{\sqrt{2\epsilon(1-\epsilon)}\frac{\sigma_{LT'}}{\sigma_0}\sin\phi}{1+\sqrt{2\epsilon(1+\epsilon)}\frac{\sigma_{LT}}{\sigma_0}\cos\phi + \epsilon\frac{\sigma_{TT}}{\sigma_0}\cos2\phi}$$

M. Diehl and S. Sapeta. Eur. Phys. J. C 41, 525-533 (2005).

SHMS Focal Plane Detectors

Photo by N. Heinrich.

Detector	Purpose
Ar/Ne Cherenkov	Not installed
Drift chambers	Tracking
Hodoscopes	Triggering, tracking
C_4F_8O Cherenkov	Particle identification
Aerogel Cherenkov	Particle identification
Shower counters	Calorimetry

S. Ali et al, to be published (2022).

-t Binning

Sum all events at one (Q^2, x_B) and separate into -t bins with similar numbers of events

Combining SHMS Settings

GPDs and Hard/Soft Factorization

GPD models rely explicitly on hard/soft factorization: process can be written as convolution of hard (perturbative) scattering and soft (non-perturbative) object

- GPDs encode 3D nucleon structure information: extraction is of high interest
- **QCD** predicts factorization at **"sufficiently high"** Q^2
- Experimental data needed to identify onset of factorization
- R. Devenish and A. Cooper-Sarkar, Deep Inelastic Scattering (Oxford University Press, 2004). Figure by N. Heinrich.

Regge Models

Regge trajectories

Linear relationship observed between mass M^2 and spin α for baryons of the same quark content

 Feynman propagator replaced with Regge propagator

- Exchange of a series of particles along a Regge trajectory
- My reaction: mesons exchanged, typically π and ρ propagators
- Cutoff is a free parameter in many models

T. Regge. Introduction to complex orbital momenta. Nuovo Cim, 14:951-976, 1959

W. Li, Exclusive Backward-Angle Omega Meson Electroproduction, Ph.D. thesis, University of Regina (2017).

Model Details

- Vrancx-Ryckebusch (**VR**): exchange of $\pi(140)$, $\rho(770)$, and $a_1(1260)$ **Regge** trajectories
- Goloskokov-Kroll (GK): uses twist-2 longitudinal (*Ẽ*, *H̃*) and twist-3 transverse (*E_T*, *H_T*) GPDs, with pion pole contributions. GK1: default GK model
 - **GK2:** modification $H_T \rightarrow H_T * 2$, as seen in CLAS12 BSA paper
- Yu-Choi-Kong (YCK): Regge trajectories, including tensor meson a₂(1320) and axial mesons a₁ and b₁(1235), with pion pole contributions.

YCK are co-authors on this paper.

YCK1: nucleon EMFFs mediated by GPDs **YCK2:** nucleon EMFFs use dipole parametrization

T. Vrancx, J. Ryckebusch & J. Nys, Phys. Rev C, 89 065202 (2014). arXiv:1310.7715
S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 65 137 (2010). arXiv:1106.4897
T. K. Choi, K.-J. Kong & B.-G. Yu, J. Korean Phys. Soc. 67, 1089-1094 (2015). arXiv:1508.00969
S. Diehl et al., Phys. Lett. B 839, 137761 (2023). arXiv:2210.14557

- CEBAF produces polarized beam up to 12 GeV
- Polarization flipped at 30 Hz in a pseudo-random sequence
 - I Mott polarimeter at injector gives source polarization: $90 \pm 1\%$
- Spin precession calculation shows Hall C receives 99% of the source polarization
- Final value P = 89⁺¹₋₃%: Uncertainty from the beam energy uncertainty (3.6 MeV) and the range of possible linac energy imbalance

Thanks to Steve Wood for polarization calculations and Dave Gaskell for uncertainty estimate