

Update of PionLT DEMP Factorizability Studies

Nathan Heinrich WNPPC 2025

Motivation

The PionLT experiment took data at JLab Hall C in 2022 Want to better understand Hadron structure (Thus the Strong Force)

GPDs and Experiment

GPDs are universal quantities and reflect nucleon structure independent of reaction

- There are 2 main methods to extract the chirality conserving GPDs:
 - Deeply Virtual Compton Scattering (DVCS)
 - Sensitive to all 4
 - Deep Exclusive Meson Production (DEMP)
 - Pseudoscalar mesons access $\widetilde{H} \widetilde{E}$
 - Vector mesons access H E

The combination of the 2 methods is needed to disentangle the different GPDs

 $\mathbf{E}^{\mathbf{q},\mathbf{g}}(x,\xi,t)$

spin avg

helicity flip

 $\mathbf{E}^{\mathbf{q},\mathbf{g}}(x,\xi,t)$

spin diff

helicity flip

Accessing GPDs with meson production

Using a recently proven factorization theorem to separate the process amplitude into two parts:

- A hard scattering process
 - perturbative QCD can be used.
- A non-perturbative part, parameterized by the GPDs

This is shown by the "Handbag Diagram"

- This applies to longitudinally polarized γ^{*} at sufficiently high $Q^{^2}$
- First shown by Collins, Frankfurt & Strikman [PRD 56(1997)2982].

Factorizability

- Factorization regime will have characteristic $1/Q^6$ scaling of σ_L with fixed x_B
 - It should also have $\sigma_L >> \sigma_T$

5

- Model independent test by extracting $\sigma_{\!\scriptscriptstyle L}$ to see where this dependence begins
- This experiment does this for pion final state at 3 values of $x_{\rm B}$:

x_B = 0.31, 0.39, 0.55

- If in regime then this data can be used to extract GPDs, otherwise all results in this Q² thrown into question
- Previous studies inconclusive (T. Horn et. al. 2008), both predictions need to be met to be conclusive

 $X_{_{\rm B}}\mbox{-}$ Bjorken scaling variable, and represents longitudinal momentum fraction

8

LT Separation - Simple

$$2\pi \frac{d^2 \sigma}{dt d\phi} = \varepsilon \frac{d \sigma_L}{dt} + \frac{d \sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d \sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d \sigma_{TT}}{dt} \cos 2\phi$$

- To extract components of cross section based on virtual photon polarization, fit the above equation.
- To do this need to have full ϕ coverage and 2 values of ϵ while keeping Q², W, and t fixed.
- To get 2 values of ε we need data from 2 different beam energies.

This means different background and physics rates

For GPD factorization we want σ_{L} corresponds to longitudinally polarized γ

LT Sep – In detail

Each iteration is actually a multi-step process

1. Choose functional form of σ_T , σ_L , σ_{LT} , σ_{TT} Arbitrary functions to fit Q², W variance across bin

2. Combine SHMS left, right, and centre Done because we need to have to get full coverage in ϕ at fixed -t

Fit parameters

 $\sigma_L = (A + B * \log(Q^2)) e^{|t|(C + D * \log(Q^2))}$

Example From $F\pi$ -2 Experiment

SHMS

HMS

10

LT Sep – In detail

3. Bin in -t and ϕ , calculate average W, Q², θ , and ϵ final value reported at average value in bin

4. Calculate MC to Data ratio in all bins

5. Use Monte Carlo to calculate unseparated cross section using equation:

$$\sigma_{\rm exp}(\bar{W},\bar{Q}^2,t,\phi;\bar{\theta},\bar{\epsilon}) = \frac{\langle Y_{\rm exp} \rangle}{\langle Y_{sim} \rangle} \sigma_{\rm MC}(\bar{W},\bar{Q}^2,t,\phi;\bar{\theta},\bar{\epsilon})$$

LT Separation Overview

12

Summary

The PionLT experiment is nearly ready to begin LT separation of cross-sections

GPDs are the exciting new frontier of proton structure 3 -

LT Separations are crucial:

- Model independent check of factorization
 - Predict both 1/Q^6 scaling of $\sigma_{_L}$ with fixed $x_{_B}$ and $\sigma_{_L}{>>}\sigma_{_T}$
- Allows access to GPD information

Expect multiple publications starting in December

Thank You

Questions?

NSERC grant: SAPIN-2021-00026

Solving the Spin Crisis

GPDs are related to the orbital angular momentum of the quarks and gluons:

Christine A. Aidala, Steven D. Bass, Delia Hasch, and Gerhard K. Mallot. The spin structure of the nucleon. Rev. Mod. Phys. 85, 655 – Published 12 April, 2013 https://doi.org/10.1103/RevModPhys.85.655

$$\frac{1}{2} = \frac{1}{2} \sum_{q} \Delta q + \Delta g + L_q + L_g$$

In the forward limit the GPDs H and H are related to the parton distributions studied in deep inelastic scattering

$$H(x,\xi,t)|_{\xi=t=0} = q(x)$$

$$\widetilde{H}(x,\xi,t)|_{\xi=t=0} = \Delta q(x)$$
(30)

GPDs contain vital information about quark total angular momentum in the nucleon. Ji's sum-rule (Ji, 1997b) relates J_q to the forward limit of the second moment in x of the spin-independent quark GPDs

$$J_q = \frac{1}{2} \int_{-1}^{+1} dx x \left[H^q(x,\xi,t=0) + E^q(x,\xi,t=0) \right].$$
(32)

The gluon "total angular momentum" could then be obtained through the equation

$$\sum_{q} J_q + J_g = \frac{1}{2}.$$
 (33)

Pressure/Mass distribution

Recent papers show equivelence between hypothetical graviton-proton scattering and DVCS interaction:

Burkert, V.D., Elouadrhiri, L. & Girod, F.X. The pressure distribution inside the proton. Nature 557, 396–399 (2018). https://doi.org/10.1038/s41586-018-0060-z

V.D. Burkert, L. Elouadrhiri, F.X. Girod. The mechanical radius of the proton arXiv:2310.11568

Scaling study

Factorization regime will have characteristic $1/Q^6$ scaling of σ_{I} with fixed x_{B}

It should also have $\sigma_1 >> \sigma_T$

Hall C

The Hall Contains two highly sophisticated magnetic spectrometers

- Target can have Liquid H₂, Liquid D₂, or solid targets
 - Takes high power beam (~800kW)
- High Momentum Spectrometer (HMS) and Super High Momentum Spectrometer (SHMS):
 - Both arms have 3 Quadrupole and 1 Dipole super conducting magnet, the SHMS has an additional dipole before the first Quadrupole
 - Dipole allows studies at specific momenta
 - Both contain similar detector packages that support high rate (<1MHz)

Spectrometer	Angle Range (Degrees)	Momentum Range (GeV/c)
HMS	10.5 - 90	0.5 - 7
SHMS	5.5 - 40	0.5 - 11

Detector Stack

Both the Spectrometers have a detector stack in their focal plane. Which give high momentum resolution and particle Identification

Detector	Purpose	Notes
Aerogel Cerenkov	Particle ID,K ⁺ /p discrimination	n = 1.011, 1.015, 1.03, 1.05
Heavy Gas Cerenkov (HGC)	Particle ID, Trigger, π^{\pm}/K^{\pm} discrimination	C_4F_{10} –Vary pressure to set n at K [±] threshold
Noble Gas Cerenkov	Particle ID, Trigger. e⁺/π⁺ at high momentum	Only in SHMS
Hodoscopes	Trigger, Time reference, Measure β	
Drift Chambers	Momentum measurement, Tracking	5mm max. Drift, 300 micron resolution
Preshower and Shower Counters (Calorimeters)	Particle ID, Trigger, e [±] Tagging	

Elastic Cross-section

Elastic Cross section is used to check systematic uncertainties

Studies this is used for:

- Spectrometer Offsets
- Target Boiling
- Detector rate dependence
- Tracking efficiency

Roughly 1 month from finishing study

p(e,e'p) Reaction

W Distribution

