

Development of the Large Prototype LXe calorimeter for PIONEER

Emma Klemets (she/her)

PhD student at UBC & TRIUMF

Supervisor: Chloé Malbrunot

Feb 14, 2025 - WNPPC

- A rare pion decay experiment in the intensity frontier
 - A high precision measurement to probe new physics at high energies
- Currently being designed and prototyped
- At PSI (The Paul Scherrer Institute), Switzerland
 → The highest intensity pion beam
- Our collaboration is ~ 80 scientists from 25 universities & national labs in Canada, the US, Japan and Switzerland

PIONEER phase 1 goal: lepton flavour universality

Measure the pion decay ratio:

$$R^{\pi}_{e/\mu}=rac{\pi^+
ightarrow e^+
u_e(\gamma)}{\pi^+
ightarrow \mu^+
u_\mu(\gamma)}$$

Best test of the hypothesis that leptons have identical weak interaction strengths

- Known very precisely theoretically in the Standard Model (SM) [1]
- Current measurement (PIENU experiment at TRIUMF [2]) has 15x larger error bars than theory
- PIONEER goal is a 0.01% measurement

[1] Cirigliano & Rosell, <u>https://doi.org/10.1103/PhysRevLett.99.231801</u>

[2] Aguilar-Arevalo, et al. https://doi.org/10.1103/PhysRevLett.115.071801 3

What we measure

$$R^{\pi}_{e/\mu}=rac{\pi^+
ightarrow e^+
u_e(\gamma)}{\pi^+
ightarrow \mu^+
u_\mu(\gamma)}$$

We measure the positron energy & time spectra to discriminate between the decays. Here looking just at energy.

Pion to positron: $\mathbf{\pi} \rightarrow \mathbf{e}$

- Two body decay
- Positron energy ~ 69 MeV
- Timing based on $\tau_{\pi} \sim 26$ ns

Pion to muon: $\pi \rightarrow \mu \rightarrow e$

- Three body decay
- Positron energy in [0, 52] MeV
- Timing based on $\tau_{\rm u}$ ~ 2200 ns

Overview of the experimental setup

Overview of the experimental setup

The calorimeter

To be made of liquid xenon (LXe) or LYSO crystals – both are fast, with large light yield.

My focus is the **LXe** option:

- Energy deposits create EM showers
- We detect vacuum ultraviolet (VUV) scintillation light
- Excellent energy resolution and very uniform light response

3. Tracker

4. Calorimeter (calo)

What makes this so difficult: the low energy tail is buried under the Michel spectrum

This tail comes from:

- Finite energy and time resolution of the detector
- Electromagnetic shower leakages through the front & sides
- Photo-nuclear interactions
- Radiative decays ...

Minimizing the tail fraction ⇒ the job of a good calorimeter

The calorimeter

Designed to precisely determine the energy deposited by incoming particles.

• Discrimination criterion between $\pi \to e$ and $\pi \to \mu \to e$ events

What we need from the calorimeter is:

- I. High angular coverage and uniformity
- II. Fast, sub-ns timing: ~40 ns decay
- III. Resolution: 1.5 2% peak resolution
- IV. Pile-up separation ability

General PIONEER experiment diagram

The calorimeter

Designed to precisely determine the energy deposited by incoming particles.

• Discrimination criterion between $\pi \rightarrow e$ and $\pi \rightarrow \mu \rightarrow e$ events

What we need from the calorimeter is:

- I. High angular coverage and uniformity
- II. Fast, sub-ns timing: ~40 ns decay
- III. Resolution: 1.5 2% peak resolution
- IV. Pile-up separation ability

General PIONEER experiment diagram

The Large Prototype (LP)

We are building a large LXe calorimeter prototype to test the LXe calorimeter option. 20-100 MeV

Goals:

- Measure energy resolution and line shape
 - Compare to simulations
- Study shower leakages
- Study pileup suppression
- Practical training on building and running a LXe cryogenics system

Current large prototype design using ~650 kg of LXe. Nominal design has 133 photomultiplier tubes (PMTs) and 400 silicon photomultipliers (SiPM) quads.

My simulation development for the LP

We have a PIONEER simulation framework:

- Written using Geant4, ROOT
- A Monte Carlo (MC) simulation of our experiment, along with detector response, event mixing and reconstruction algorithms

I've been working on developing the optical photon (OP) processing in our simulation as I build the MC simulation for the Large Prototype.

- Results are used for design choices
- The simulation will also be validated with prototype data

Visualization of photon paths in the LP simulation.

Simulation analysis

- Green: Truth energy deposits in calo \rightarrow MC only
- Blue: Optical photons detected scaled to match energy peak
 - → Still oversimplified compared to real data
- Red: Crystal Ball function fit to peak region, resulting in σ & μ values

Energy resolution = σ/μ

```
Tail fraction = \frac{\sum(\text{events with energy} < 56 \text{ MeV})}{\sum(\text{all events})}
```


LP simulation results for 5x10⁶ positron events

Weighting performance

Beam is a forward 70 MeV positron with beam spot of \sim 1 cm², no divergence

The weighting of photon hits is needed because of the different PMT/SiPM coverage on each surface.

After weighting: energy resolution goes from 3.9% to 1.9%

Before weighting

After simple 5 surface weighting

Design parameters studies

Internal reflectivity

More reflective \rightarrow more uniform light detection, but timing will be smeared out

Number of window photosensors

More silicon photomultipliers \rightarrow more complicated DAQ system needed

Conclusions

The PIONEER Experiment at PSI is under development.

The LXe Large Prototype is one part of this work:

- Simulations design choices and preliminary results are almost complete.
- More specific simulations planned include an angled beam and calibration studies.
- Lots of hardware development ongoing at TRIUMF, PSI, KEK, and at the University of Tokyo.
- We're expecting to test the LP during beamtime at PSI in 2026!

A next generation rare pion decay experiment

Emma Klemets

Strong helicity-suppressed in $\pi \to ev$:

$$egin{aligned} R^\pi_{e/\mu} &\sim rac{m_e^2}{m_\mu^2} (rac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2})^2 &\sim 10^{-4} \ &\sim 10^{-5} imes imes 5.5 \end{aligned}$$

Beyond the Standard model (BSM)

Our goal precision will make us sensitive to high mass scale BSM physics

ex. new pseudoscalars couplings: charged Higgs

$$\begin{aligned} \pi^{+} & \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow} & \stackrel{}{\Pi^{+}} & \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow$$

Our 0.01% measurement \rightarrow energy scale (Λ_{eP}) ~ 3000 TeV

And many others:

- New scalar couplings
- Leptoquarks
- Induced scalar currents...

Later phases of PIONEER

Other physics

- New couplings and physics at very high mass
- Exotics decays: sterile massive neutrino search

Phase 2 & 3 - CKM unitarity

- Using Pion Beta decays, to improve the precision of: $B(\pi^+ o \pi^0 e^+
 u)$
- To measure the quark mixing parameters: |V_{us}|/|V_{ud}| and |V_{ud}|

Energy & time

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{\epsilon}$$

We measure the positron energy & time spectra to discriminate between the decays. After fits are performed, there are also corrections (c_{tail} , R^{ϵ})

Liquid xenon for calorimetry

Liquid xenon (LXe) - a nobel liquid with good characteristics for use in a calorimeter

- High atomic number & density \rightarrow high stopping power for radiation
- Very good uniformity & fast response
- Produces both charge carriers & scintillation light → we will use only the light signal

Optical properties of the light signal:

Scintillation yield: ~ 50 000 photons / MeV of deposited energy from a beta particle \rightarrow lots of light produced!

Wavelength: ~ 175 nm \rightarrow vacuum ultraviolet (VUV) light

ATAR details

A 5D tracking system that will:

- Define the pion stopping region
- Provide high resolution timing information

Design requirements:

- Large dynamic range: minimum-ionizing particles (MIPs) to π/μ stopping
- Good time resolution: < 100 ps
- Sufficient granularity: < 200 μm
- Minimal dead material

New technology: LGADs (AC-coupled low gain avalanche diodes)

Design baseline: 48 stacked planes of 120 µm thick AC-LGAD strips

LYSO details

- Energy resolution is not very well known,
 4.5% has been reported at 70 MeV
- Our colleagues primarily at the University of Washington are testing a small simpler crystal array at the moment, with currently promising results
- Getting an array of 300+ tapered crystals manufactured is currently possible, by a single company

Lutetium-yttrium oxyorthosilicate (LYSO):

- By weight: 72% Lutetium, 17% Oxygen, 6%
 Silicon, 3% Cerium (dopant), 2% Yttrium
- X₀ = 1.14 cm , R_M = 2.07 cm
- Decay time = 40 ns
- Light yield 30,000 γ/MeV
- λ_{peak} 420 nm -> conventional PMTs
- Radioactive (< 1 MeV constant rumble)
- Non hygroscopic
- No Temp dependence
- n = 1.82
- Not so cheap ... ⊗

From David Hertzog

Lightmap output from simulation

