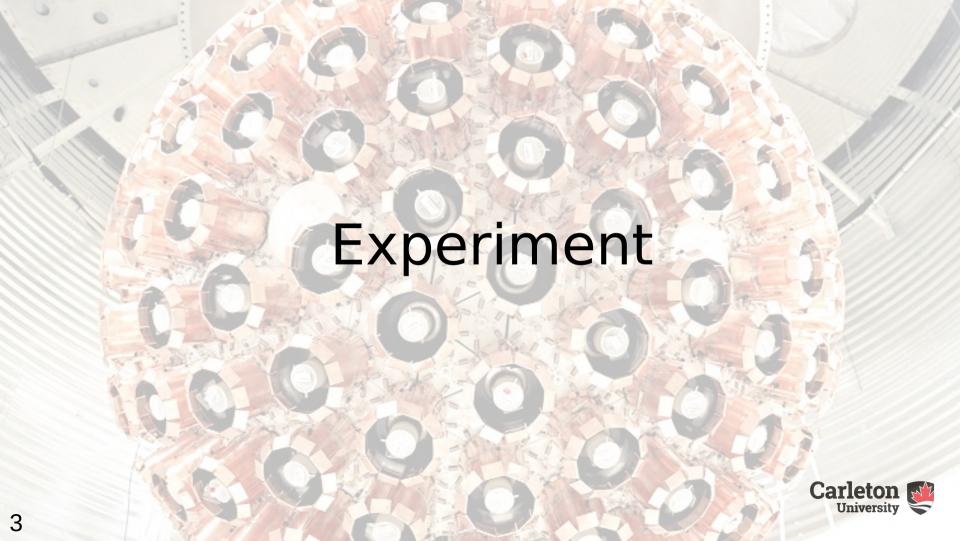
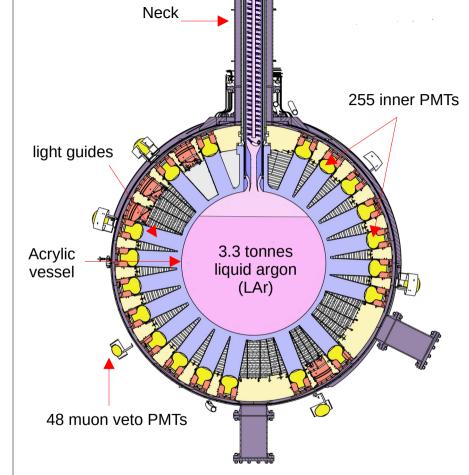
Recent developments and analyses in the DEAP-3600 experiment

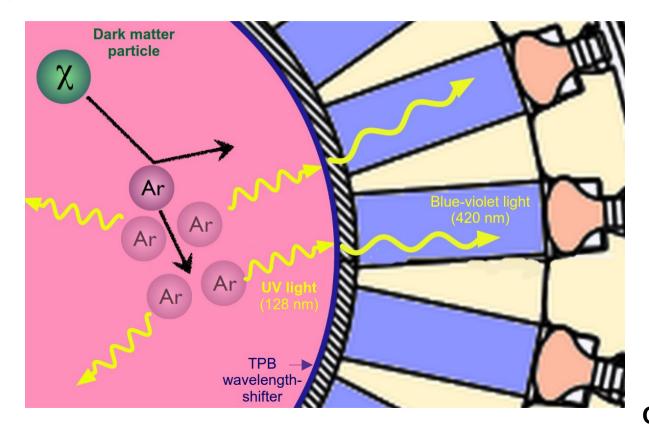
Akhil Maru 14th February, 2025



Outline

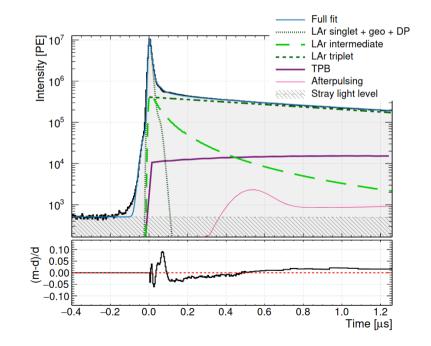

- DEAP-3600 experiment
- Results
 - ³⁹Ar specific activity measurement
 - ³⁹Ar half-life measurement
 - Quenching measurement
 - WIMP and Planck-scale DM search
- On-going analysis
 - Muon flux measurement
- Future!

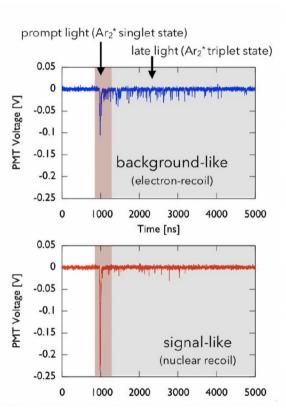
Detector


- Direct dark matter search experiment
 - Dark matter Experiment using Argon
 Pulse-shape discrimination (DEAP)
- (3269±24) kg liquid argon (LAr)
- Located at SNOLAB, Sudbury
- ~2km rock overburden (6000 m.w.e)

Water shielding

Detection

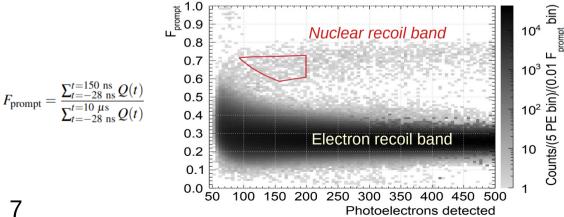


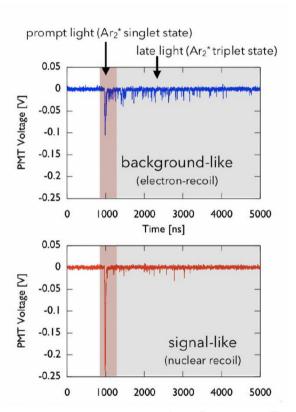


Pulse-shape discrimination (PSD)

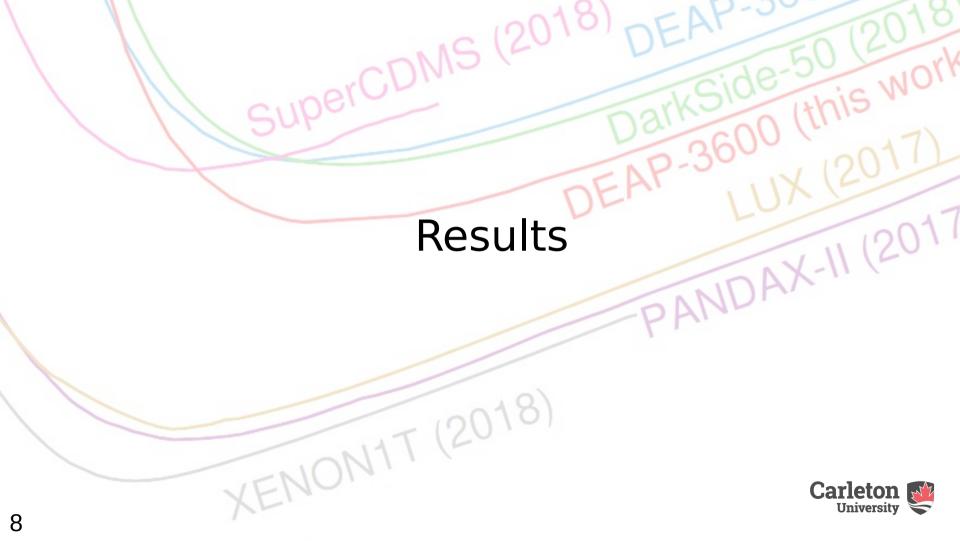
Pulse shape model:

$$PSD = \frac{Prompt \ light}{Prompt \ light + Late \ light}$$

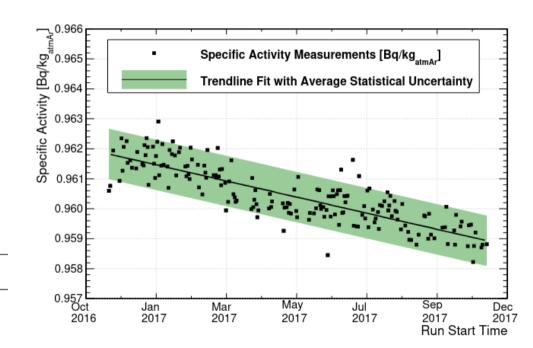



Pulse-shape discrimination (PSD)

Pulse shape model:


$$PSD = \frac{Prompt \ light}{Prompt \ light + Late \ light}$$

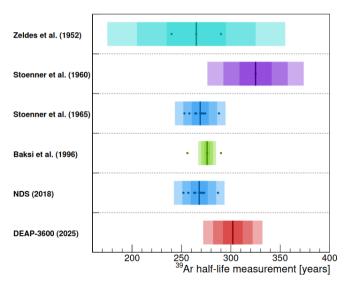
- Nuclear recoil band and electron recoil band can be easily distinguished using this method
- Need to study the backgrounds thoroughly

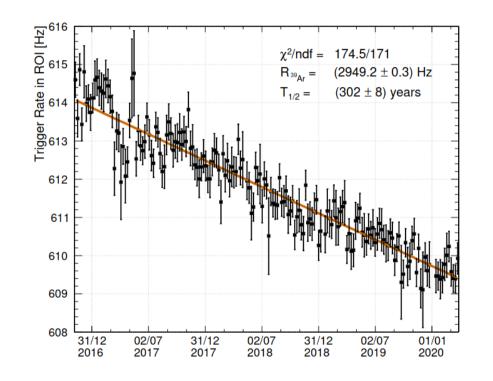

Results – ³⁹Ar specific activity measurement

- 167 live-days of data
- Specific activity

$$S_{\text{Ar39}} = \frac{N}{T_{\text{live}} \cdot m_{LAr}},$$

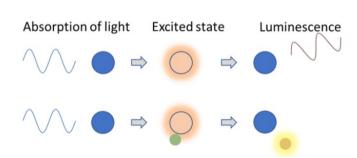
Results:

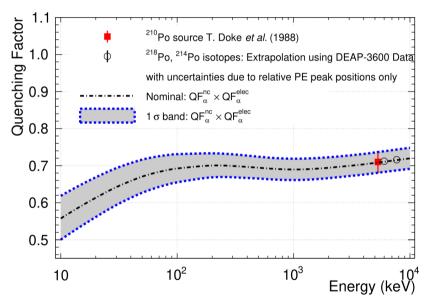

Measurement	Specific activity [Bq/kg _{atmAr}]		
WARP [15] ArDM [16] DEAP-3600 (this work)	$\begin{aligned} 1.01 &\pm 0.02_{stat} \pm 0.08_{sys} \\ 0.95 &\pm 0.05 \\ 0.964 &\pm 0.001_{stat} \pm 0.024_{sys} \end{aligned}$		



Results – ³⁹Ar half-life measurement

- First continuous direct measurement of ³⁹Ar decay
- 3.4 years of data

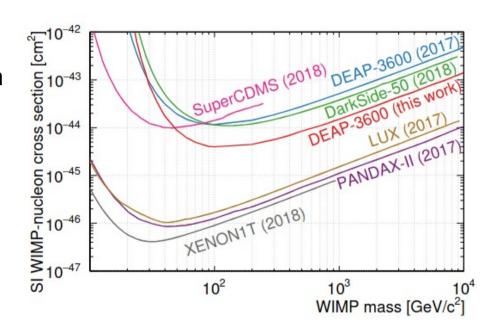



Results – Relative measurement and extrapolation of the quenching factor of α -particles in LAr

$$QF_{\alpha} = \frac{PE_{\alpha}}{Y \times E_{\alpha,dep}}$$

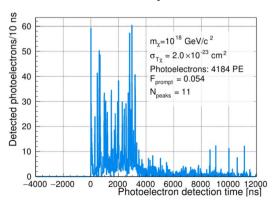
- Measure at full α -energy peaks
- Theoretical extrapolation to low energy

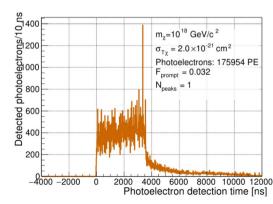
Collisional quenching

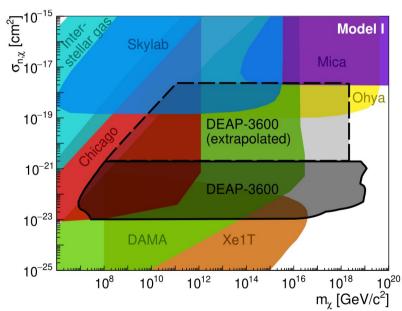

More about this in the next talk by Michael Perry

Results – WIMP dark matter search

- 231 live-days of data
- Leading limit on SI WIMP-nucleon cross section on LAr target
- No candidate signal events found
- Working on PLR analysis with the full dataset

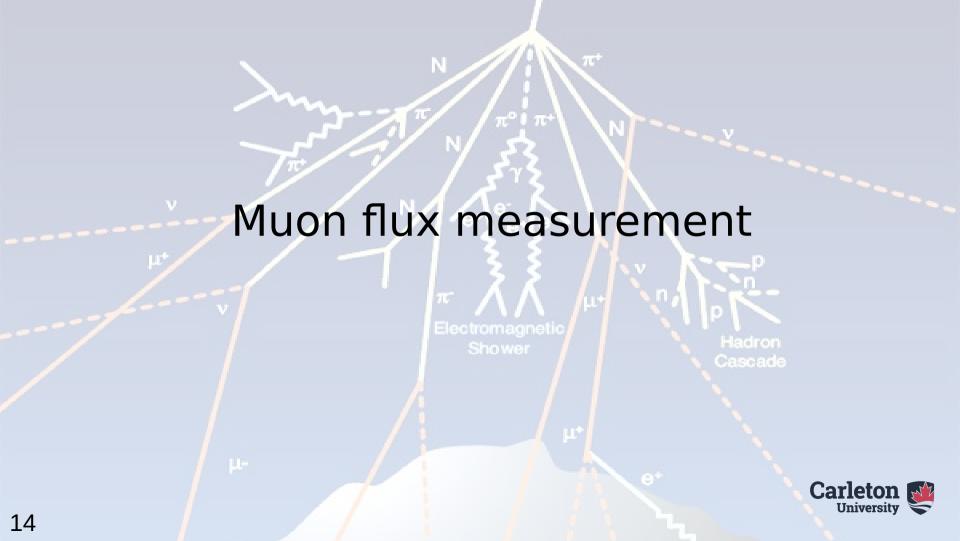






Results – Planck scale mass dark matter search

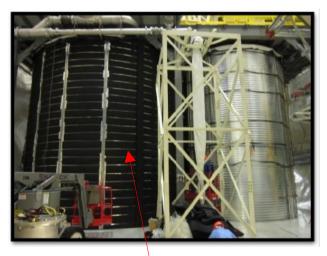
- First of its kind probe at Planck-scale mass ($m_\chi \simeq 10^{19}\, \text{GeV/c}^2$) DM
- 813 live-days of data
- Look for very high energy events
- Multiple interaction in LAr



Phys. Rev. Lett. 128, 011801 (2022), arXiv:2108.09405v2

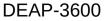
Muon flux measurements!

What do we need?

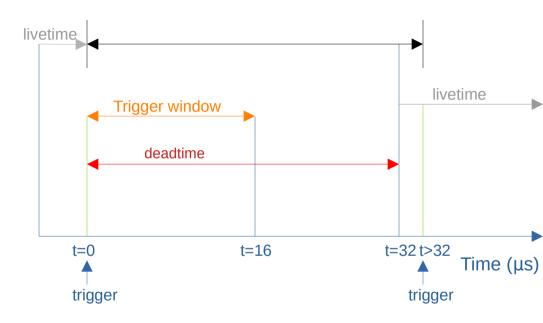

$$Muon Flux = \frac{No.of Muons}{Acceptance \cdot Livetime \cdot Effective Area}$$

Why do we need it?

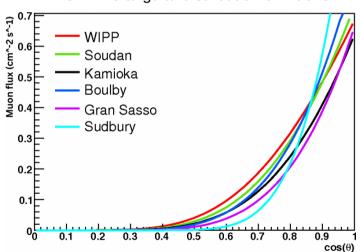
Muons → cosmogenic neutrons → DM-like events → Bad!

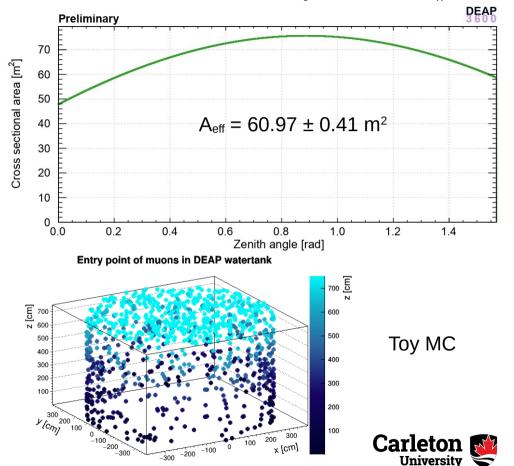


- Watertank data (MV)
 - #(muons) = 3395


Cherenkov radiation in water

Livetime


- Trigger counting
- Runtime ~ 20-22 hr
- Need to subtract deadtime between two events
- Livetime = runtime deadtime
- $-2.77 * 10^7 s$

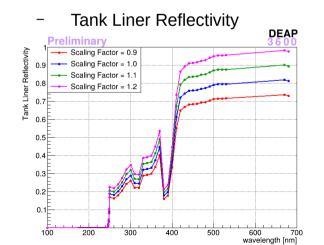


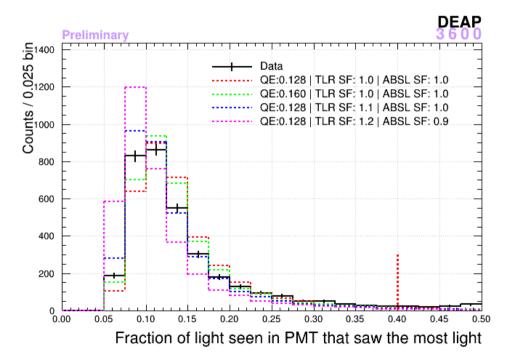
- Effective area
 - $A_{eff} = 2\pi rh \sin\Theta + \pi r^2 \cos\Theta$

Mei-Hime angular distribution of muons

Acceptances (on-going)

- Matching simulation models to the data
- External muGenCNL generator to simulate muons in RAT software
- Tuning optical parameters of the detector in the simulation

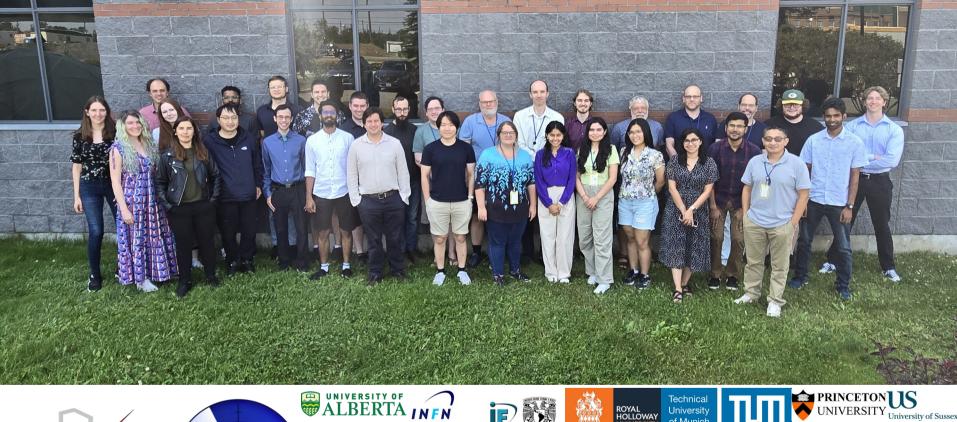

$$Acceptance = \frac{Number\ of\ events\ passing\ cuts}{Total\ number\ of\ events}$$



Optical Parameters:

- QE: Quantum Efficiency of the photocathode in the PMTs
- TLR: Tank Liner Reflectivity of the watertank
- ABSL: Absorption Length of the photons
 Carleton

- Watertank data (MV)
 - #(muons) = 3395
 - Livetime = $2.77 * 10^7 s$
 - Effective area = 60.97 ± 0.41 m²
- Acceptances (on-going)

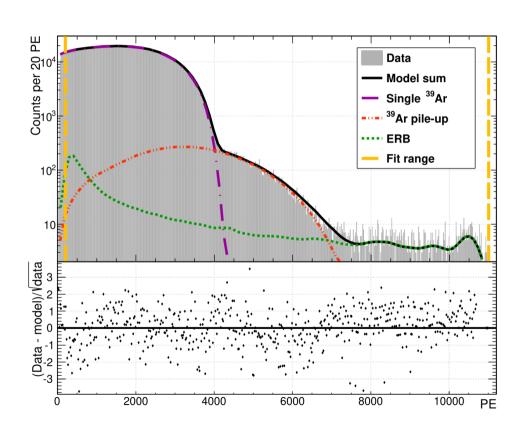


Future work

- Detector upgrades done!
- Third fill starts soon
- Multiple analyses close to done:
 - Muon flux measurement
 - WIMP search analysis
 - Neutrino absorption in LAr
- New results coming out soon! Stay tuned!

Queen's




Thank You

Backup

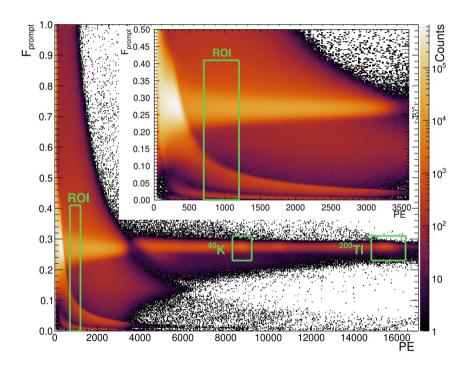
Specific activity measurement of ³⁹Ar

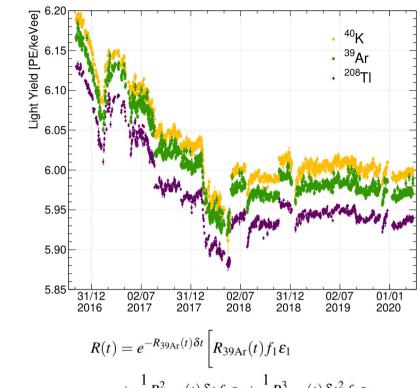
$$N = N_{\text{single}} + N_{\text{pile-up}},$$

 $N_{\text{single}} = \frac{n \cdot a_{\text{presc}}}{\varepsilon \cdot b},$

$$N_{\text{pile-up}} = N_{\text{double}} + N_{\text{triple}} + N_{\text{ERB,Ar39}} + N_{\text{hFp,Ar39}}.$$

$$R_{\text{Ar39}} = \sqrt{\frac{N_{\text{double}}}{2 \cdot T_{\text{live}} \cdot \delta t_{\text{int}}}}.$$


Specific activity measurement of ³⁹Ar

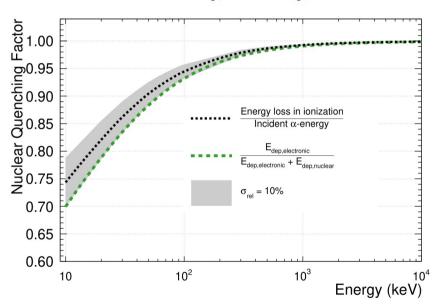

Table 1 Parameters, their values and constraints, and the resulting contributions to the uncertainty for the specific activity measurement. Negligibly small systematic uncertainties are indicated with '–'. The dominant uncertainty on S_{Ar39} arises from the uncertainties on event selection cut efficiency values as determined with the data-driven method (d-d) and the Monte Carlo method (MC).

Parameter	Symbol	Value	Constraints	Absolute uncertainty on S _{Ar39} [Bq/kg _{atmAr}]
Fit range		[200, 11000] PE	Fixed	0.001
Histogram bin width	b	20 PE	Fixed	0.001
Constant energy scale parameter	p_0	$(1.3 \pm 0.4) \text{ PE}$	Fixed	_
Linear energy scale term	p_1	[7.1, 7.3] PE/keV	Free-floating, run-dependent	0.009
Quadratic energy scale term	p_2	_	Not considered in this method	_
Linear resolution parameter	p_3	[1.67, 1.73] PE	Free-floating, run-dependent	0.009
Quadratic resolution parameter	p_4	$[2.1, 3.8] \times 10^{-4}$	Free-floating, run-dependent	0.001
39 Ar β -shape nuisance parameter	a_0		Free-floating, constrained by a penalty term	0.001
³⁹ Ar normalization	n		Free floating, run-dependent	_
Double ³⁹ Ar pile-up normalization	$n_{\rm double}$		Free floating, run-dependent	_
ERB normalization	$n_{\rm ERB}$		Free-floating, run-dependent	_
⁸⁵ Kr normalization	$n_{\mathrm{Kr}85}$		Upper limit, see Section 5.2	0.010
Liquid argon mass	m_{LAr}	$(3269 \pm 24) \text{ kg}$	Measured, see Section 3	0.007
Live-time	$T_{ m live}$	167 d [sum of all runs]	Measured, see Section 4	-
Cut efficiency on single ³⁹ Ar Cut efficiency on double ³⁹ Ar pile-up	$arepsilon$ $arepsilon_{ ext{double}}$	0.983 [d-d], 0.999 [MC] Run- & energy-dependent	Measured, see Section 5.2	0.016

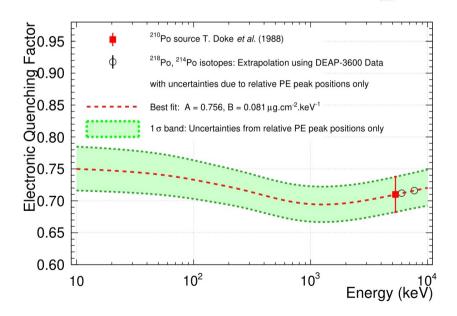
Half-life measurement of ³⁹Ar

$$R(t) = e^{-R_{39Ar}(t)\delta t} \left[R_{39Ar}(t) f_1 \varepsilon_1 + \frac{1}{2} R_{39Ar}^2(t) \delta t f_2 \varepsilon_2 + \frac{1}{6} R_{39Ar}^3(t) \delta t^2 f_3 \varepsilon_3 + \frac{1}{2} R_{39Ar}(t) R_{Chv} e^{-R_{Chv}\delta t} \delta t f_4 \varepsilon_4 \right] + R_{bg}.$$

Half-life measurement of ³⁹Ar

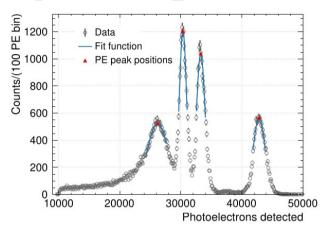

Table 2 List of parameters used in the model of ³⁹Ar trigger rates (Sections 4, 5) along with their uncertainties. The uncertainties due to the event selection efficiencies for each event type are given as a combined value. The uncertainties are estimated with respect to the measured mean lifetime and converted to half-life values. The character '–' indicates a negligibly small uncertainty.

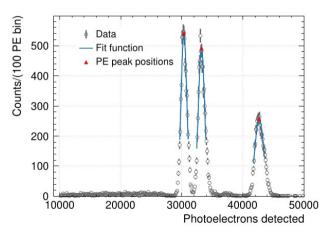
Parameter	Symbol	Value	Constraints	Absolute uncertainty on $T_{1/2}$ [years]
³⁹ Ar trigger rate at dataset start	$R_{^{39}\mathrm{Ar}}$		Free-floating	
³⁹ Ar lifetime	$ au_{39}$ Ar		Free-floating	
Cherenkov trigger rate	$R_{ m Chv}$	$(538 \pm 4) \text{Hz}$	Fixed	_
ERB background rate	$R_{ m bg}$	$(1.65 \pm 0.31) \mathrm{Hz}$	Fixed	0.15
Livetime	$T_{ m live}$	1.80 years	Fixed	_
Bin width for trigger rate averages		7 days	Fixed	1.3
Fraction of single ³⁹ Ar spectrum in the ROI	f_1	0.21 ± 0.05	Fixed	0.21
Cut efficiency for single ³⁹ Ar	ε_1	1	Fixed	_
Fraction of double ³⁹ Ar spectrum in the ROI	f_2	0.20 ± 0.05	Fixed	1.1
Cut efficiency for double ³⁹ Ar	ε_2	0.9099 ± 0.0033	Fixed	1.8
Fraction of triple ³⁹ Ar spectrum in the ROI	f_3	0.19 ± 0.05	Fixed	0.01
Cut efficiency for triple ³⁹ Ar	ε_3	0.860 ± 0.039	Fixed	0.19
Fraction of ³⁹ Ar-Cherenkov pile-up spectrum in the ROI	f_4	0.21 ± 0.05	Fixed	0.04
Cut efficiency for ³⁹ Ar-Cherenkov pile-up	ϵ_4	1	Fixed	_
Light yield corrections (constant)		Run-dependent	N/A	2.3
Light yield corrections (differential)		Run-dependent	N/A	5.1
Correlated triggers		Run-dependent	N/A	2.1



Quenching factor extrapolation

$$\mathrm{QF}_{lpha}^{\mathrm{nucl}} = rac{E_{\mathrm{dep,elec}}}{E_{\mathrm{dep,elec}} + E_{\mathrm{dep,nucl}}}$$




$$QF_{\alpha}^{M} = \frac{y(E_{\alpha})}{E_{\alpha}} = \frac{A}{E_{\alpha}} \int_{0}^{E_{\alpha}} \frac{dE}{1 + B\frac{dE}{dx}}$$

Quenching factor extrapolation

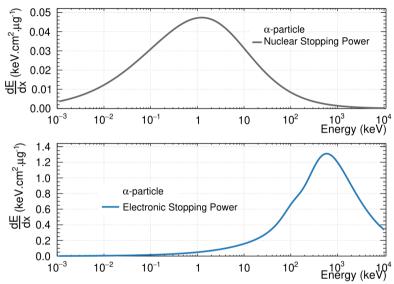
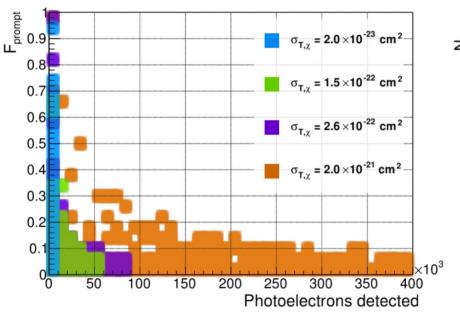
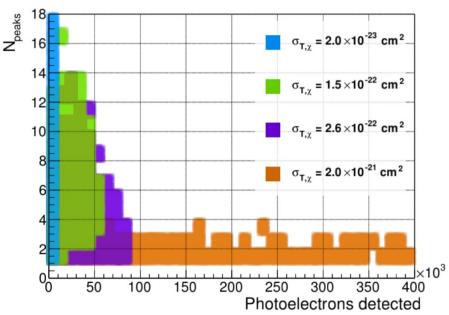
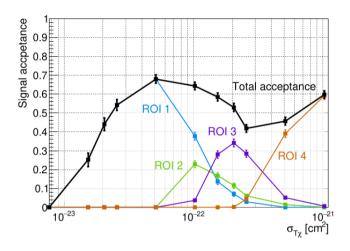




Table 2 Quenching factor of α-particles obtained from the relative measurement using 222 Rn, 218 Po and 214 Po decays within the DEAP-3600 detector. The measured value by Ref. [16] of the QF for α-particles from 210 Po decays is also shown.

Radioactive isotope	Energy of α -particle (MeV)	Ratio of PE peak to 222 Rn PE peak (R_i)	Uncertainty on the peak PE ratio (σ_i)	Quenching factor (QF_{α})	Uncertainty on QF_{α} due to PE peak ratios	Absolute uncertainty on QF_{α}
²¹⁰ Po	5.305	-	-	0.710 [16]	-	0.028 [16]
²¹⁸ Po	6.002	1.096	0.002	0.712	0.001	-
²¹⁴ Po	7.686	1.411	0.006	0.716	0.003	-


Planck scale mass DM search

Planck scale mass DM search

ROI	PE range	Energy $[MeV_{ee}]$	$N_{\rm peaks}^{\rm min}$	$F_{\mathrm{prompt}}^{\mathrm{max}}$	μ_b	$N_{\rm obs.}$
1	4000 – 20000	0.5 – 2.9	7	0.10	$(4 \pm 3) \times 10^{-2}$	0
2	20000 – 30000	2.9 – 4.4	5	0.10	$(6 \pm 1) \times 10^{-4}$	0
3	30000 – 70000	4.4 – 10.4	4	0.10	$(6 \pm 2) \times 10^{-4}$	0
4	$70000 - 4 \times 10^8$	10.4 – 60000	0	0.05	$(10 \pm 3) \times 10^{-3}$	0

TABLE I. ROI definitions, background expectations μ_b , and observed event counts N_{obs.} in the 813 d exposure. A cut rejecting events in a [-10, 90] µs window surrounding each MV trigger is applied to all ROIs; low-level cuts requiring that signals be consistent with bulk LAr scintillation are applied to ROIs 1–3. The upper energy bound on ROI 4 is estimated assuming a constant light yield above 10 MeV_{ee}, the highest energy at which the detector is calibrated.

