Optimization of Event Selection for H^{±±} Search at ATLAS using Machine Learning Techniques

Adrienne Scott University of Victoria

February 15th, 2025 Winter Nuclear Particle Physics Conference 2025

University of Victoria

The ATLAS Experiment

- ATLAS data from p-p collisions at the LHC
 - Run 2 (2015-2018): \sqrt{s} = 13 TeV, 140 fb⁻¹
 - Run 3 (2022-2026): \sqrt{s} = 13.6 TeV, 183 fb⁻¹ so far
- In this talk, only using Run 2 simulated events
- Events are reconstructed using
 - Charged particle tracks in the inner detector
 - Energy deposits in the calorimeters
 - Hits in the muon spectrometer

Charged Higgs Search

- The Georgi-Machacek (GM) model extends the Higgs sector, allowing for a quintuplet $(H_5^0, H_5^{\pm}, H_5^{\pm\pm})$ which are degenerate in mass $(m_{H_5})^1$
- Our analysis is performing a search for H_5^{\pm} and H_5^{\pm} produced by vector boson fusion (VBF) and decaying leptonically via $W^{\pm}Z$ or $W^{\pm}W^{\pm}$
 - In this talk, focusing on $H_5^{\pm\pm}$

1 Nucl. Phys. B 262 (1985) 463

Charged Higgs Search

- The Georgi-Machacek (GM) model extends the Higgs sector, allowing for a quintuplet $(H_5^0, H_5^{\pm}, H_5^{\pm\pm})$ which are degenerate in mass $(m_{H_5})^1$
- Our analysis is performing a search for H_5^{\pm} and H_5^{\pm} produced by vector boson fusion (VBF) and decaying leptonically via $W^{\pm}Z$ or $W^{\pm}W^{\pm}$
 - In this talk, focusing on $H_5^{\pm\pm}$
- Motivated by excess observed in Run 2 in W[±]Z and W[±]W[±] channels
- Improve limits by optimizing search for GM model, using Run 2 and partial Run 3 (2022-2023) data

1 Nucl. Phys. B 262 (1985) 463

Signal Region Optimization for $H^{\pm\pm}$

- Improving the signal region(SR) selection will improve our sensitivity to H^{±±}
- High-dimensional problem with large quantity of labelled simulation events is ideal for machine learning (ML)
- Can ML do better than existing cut-based SR selection?

Machine Learning Approach

- Classifier neural network (NN) implemented in Keras Tensorflow
- Simulated event samples from Run 2
- Apply a 'basic' SR cut prior to training
- Signal (1) 277,393 events
 - 200 GeV 3 TeV H^{±±} produced via VBF
 - Omitting every other mass point for interpolation studies
- Backgrounds (0) 879,119 events
 - EW & QCD (& interference) W[±]W[±] production with 2 jets in the final state
 - EW & QCD (& interference) W[±]Z production with 2 jets in the final state
- Balance signal & background using class weights

Feature Selection Procedure

- **1.** Train NN with all features
- 2. Train NN with each feature scrambled one at a time
- 3. Rank features by feature importance

Area Under ROC Curve with Feature

Feature Importance (FI) = $\frac{1}{\text{Area Under ROC Curve without feature}}$

FI > 1: The network performs worse without the feature FI < 1: The network performs better without the feature

4. Remove low ranking features and repeat until AUC is maximized

H^{±±} (Signal) ssWW & WZ EWK, QCD & INT (Background)

Selected Features

ATLAS Work in Progress $\sqrt{s} = 13$ TeV

Selected Features Ordered by Feature Importance

Charged Higgs Mass Coverage

- Performing search for $H^{\pm\pm}$ masses ranging from 200 GeV to 3 TeV
- Simplest approach is to use a single NN for entire mass range
- So far: using an **ensemble** of signals across the mass range
- 1. How well is the ensemble NN able to interpolate between simulated mass points used in training?
- 2. How does the ensemble NN performance depend on $H^{\pm\pm}$ mass?
- 3. At a given mass point, how does the ensemble NN performance compare to a NN dedicated for this mass point?

Charged Higgs Mass Coverage

- Ensemble demonstrates excellent interpolation power
- 2. Performance decreases significantly at low mass

1.

3. Gap between dedicated NN and ensemble NN increases at low mass

Event Weighting

- Can we improve performance at low mass by modifying how we combine signal samples?
- Class weights method depends on number of events per mass point sample and distribution of simulated mass points
- Two new approaches:
 - . Democratic Signal Class Weights
 - Assign signal weights so that each signal sample has equal sum of weights
 - Eliminates dependence on number of events per mass point sample
- 2. Physical Event Weights
 - Depends on Monte Carlo weights and cross section
 - Encourages network to focus on events which are more likely to be found in data

Event Weighting Results

- Democratic class weights slightly improve performance at low mass
 - High mass samples have more events
- Physical event weights significantly improve performance at low mass
 - Cross-section decreases monotonically with mass
- Physical event weights also reduce performance at high mass
 - We expect lower signal significance in this mass range

Physical Event Weights Performance

Conclusion

- Features that are important for NNs may not be for cuts-based analysis
- Ensemble training enables interpolation between mass points
- Class and event weighting methods can significantly impact NN outcomes
- Simple NNs can out-perform cuts-based selections and offer a rich environment for exploring ML behaviour

Thank you!

University of Victoria

Backup: *H*^{±±} Cross-Section

Backup: Feature Formulas

• MET (or $E_{\rm miss}^{\rm T}$) is the magnitude of the $p_{\rm T}^{\rm miss}$ vector defined as

- Source: The performance of missing transverse momentum reconstruction and its significance with the ATLAS detector using 140 fb-1 of s√=13 TeV pp collisions. (2024)
- Event centrality

$$\xi = \min\{\min(\eta_{l_1}, \eta_{l_2}) - \min(\eta_{j_1}, \eta_{j_2}), \max(\eta_{j_1}, \eta_{j_2}) - \max(\eta_{l_1}, \eta_{l_2})\}$$

H^{±±} (Signal)
ssWW & WZ EWK, QCD & INT (Background)

Backup: Rejected Features

- Additional redundant information can decrease network performance
 - Energy is highly correlated with p_{T}
 - Useful phi information was already encoded in $\Delta \phi_{ij}$ or $\Delta \phi_{ll}$

Backup: Feature Analysis			
Feature Importance by AUC Ratios w Baseline AUC 0.960			
$\begin{array}{c} \bullet \\ \bullet $			
ా ా శిల్ ర్రాహించి రో శిల్ రో శిల్ థో Features			

Iteration 1	Iteration 2	Iteration 3	Iteration 4
H_T	$p_T(l_1)$	$p_T(l_2)$	$p_T(l_2)$
$p_T(l_1)$	$p_T(l_2)$	$\eta(l_2)$	E_T^{miss}
$\eta(l_1)$	$\eta(l_1)$	$\Delta \phi_{ll}$	$p_T(l_1)$
$ \Delta y_{jj} $	$\eta(l_2)$	$\eta(l_1)$	$\Delta \phi_{jj}$
$\eta(l_2)$	$H_{T_{i}}$	E_T^{miss}	H_T
$\Delta \phi_{ll}$	E_T^{miss}	$p_T(l_1)$	ξ
$\phi(j_1)$	$\Delta \phi_{ll}$	$\Delta \phi_{jj}$	Δy_{ij}
ξ	$\eta(j_2)$	H_T	$\eta(j_2)$
E_T^{miss}	ξ	$p_T(j_1)$	$\eta(l_1)$
$\phi(l_1)$	$\Delta \phi_{jj}$	m_{jj}	$p_T(j_1)$
$p_T(j_1)$	$ \Delta y_{jj} $	$\eta(j_1)$	$\eta(j_1)$
$\Delta \phi_{jj}$	$\phi(j_1)$	ξ.	$ \Delta y_{ll} $
$E(l_1)$	$p_T(j_1)$	$ \Delta y_{jj} $	$\eta(l_2)$
$\phi(j_2)$	$\eta(j_1)$	$\eta(j_2)$	m_{jj}
$p_T(l_2)$	m_{jj}	$p_T(j_2)$	$p_T(j_2)$
$p_T(j_2)$	$p_T(j_2)$		ΔR_{ll}
$E(j_1)$	$\phi(j_2)$		$\Delta \phi_{ll}$
$\phi(l_2)$	$\phi(l_2)$		
m_{jj}	$\phi(l_1)$		
$\eta(j_1)$			
$E(l_2)$			
$\eta(j_2)$			
$E(j_2)$			

Backup: Feature Correlations

*The absolute value of $\Delta \phi_{ll}$ and $\Delta \phi_{jj}$ was only used for the correlation matrices. In training, $\Delta \phi_{ll}$ and $\Delta \phi_{jj}$ were used with no absolute value.

Backup: Event Weighting Equations

Class Weights:

$$w_s = \frac{N_s + N_b}{2 \cdot N_s}$$
 , $w_b = \frac{N_s + N_b}{2 \cdot N_b}$

Democratic Signal Class Weights:

$$w_{s,i} = \frac{\sum_{i}^{n} N_{s,i}}{n \cdot N_{s,i}} \frac{N_{s} + N_{b}}{2 \cdot N_{s}}, w_{b} = \frac{N_{s} + N_{b}}{2 \cdot N_{b}}$$

Physical Event Weights:

- 1. For each event the initial weight is MC Weight × Scale Factors × $\sigma \times \mathcal{L}/\sum w_i$ where $\sum w_i$ is the sum of weights of events from that signal or background sample
- 2. The 1st percentile event weight is scaled to 0, the 99th percentile event weight is scaled to 1
 - Weights below the 1st percentile are set to 0, weights above the 99th percentile are set to 1
- 3. Multiply signal and background weights by f_s and f_b respectively to equalize the sum of weights of signal and background

$$f_s = \frac{\sum w_s + \sum w_b}{2 \cdot \sum w_s}$$
, $f_b = \frac{\sum w_s + \sum w_b}{2 \cdot \sum w_b}$

Backup: Loss Function & Training Curves

• Loss Function in use is Binary Cross Entropy with class/event weights w_i

$$BCE_q(p) = -\sum_{i}^{\infty} \frac{w_i}{\sum_{i} w_i} \cdot \left[(1 - y_i) \cdot \log(1 - p(y_i)) + y_i \cdot \log(p(y_i)) \right]$$

• Training Set: 60%, Validation Set: 20%, Test Set: 20%

Backup: Classification Distributions

Backup: Basic ssWW SR Selection

Selection
Exactly two same-sign signal leptons with p_{T} > 27 GeV ($ \eta $ < 1.37 in ee channel)
At least 2 jets with $p_T > 25 \text{ GeV}$
<i>m_{ll}</i> > 20 GeV
Z peak removal (m_{ee} more than 15 GeV separated from m_Z)
Jet 1 p_T > 65 GeV & jet 2 p_T > 35 GeV
<i>MET</i> > 30 GeV
Pass 3 lepton veto (less than 3 baseline leptons)