

Investigation of N = 32 shell closure through ⁵⁰Ca(d,p)⁵¹Ca

WNPPC 2025

Sora Ishida – Saint Mary's University Supervisor: Dr. Rituparna Kanungo

Background

Shell closure and magic numbers.

• Extra stability when a certain number of protons/ neutrons filling the shell levels: 2, 8, 20, 28, 50, 82, (126).

Neutron-rich nuclei

- Large N/Z ratio
- Short-lived
- Appearance/ disappearance of shell closure

Calcium isotope - 52Ca

- Proton magic number, Z = 20.
- Potential new shell closure at N = 32.

Past experiments on ⁵²Ca

Signs of shell closure:

- Increase in excitation energy
- Increase in neutron separation energy
- Local minima in nuclear charge radii

Large charge radii of ⁵²Ca

- Unexpected rate of increase
- Cannot be reproduced by theoretical calculations.

Huck et al. (1985)

Project summary

Excitation spectrum

• Detection of protons

Investigation of the reaction ⁵⁰Ca(d,p)⁵¹Ca

- Population of ground and excited states.
- Neutron occupancy in **2p**_{3/2}, **2p**_{1/2}, or **1f**_{5/2} shell.

 $\int_{50} + \int_{2H} \rightarrow \int_{51} + \int_{1H} + \int$

Project summary

Investigation of the reaction ⁵⁰Ca(d,p)⁵¹Ca

- Population of ground and excited states.
- Neutron occupancy in **2p**_{3/2}, **2p**_{1/2}, or **1f**_{5/2} shell.

 ^{2}H

Excitation spectrum

• Detection of protons

50Ca

Sora Ishida (Saint Mary's University)

Experiment setup

IRIS facility at TRIUMF – particle accelerator centre (Vancouver, BC)

Solid deuterium target

Thin windowless D₂ target

- Higher density, better statistics
- Less contaminants/ energy loss

Proton detection

Protons in **upstream** of target

- High reaction cross section
- Distinguishable energy for different states

Upstream detector

- Annular silicon detector array
- Wide angle coverage
- Light particles

Proton detection

Sora Ishida (Saint Mary's University)

Missing mass technique - ⁵⁰Ca(d,p)⁵¹Ca

$$\mathbf{Q} = \mathbf{m}_{50Ca} + \mathbf{m}_{d} - \mathbf{m}_{p} - \mathbf{m}_{51Ca} \qquad \mathbf{m}_{51Ca} = \sqrt{\frac{m_{50Ca}^{2} + m_{p}^{2} - m_{d}^{2} + 2(E_{50Ca} + m_{50Ca})}{-2(E_{50Ca} + m_{50Ca} + m_{d})(E_{p} + m_{p}) + 2P_{50Ca}P_{p}\cos(\theta_{p})}}$$

Q: energy released or absorbed E_A : **kinetic energy** of particle A

- P_{A} : relativistic **momentum** of A
- θ_{p} : scattering angle of proton

Excitation spectrum

 $E_{ex} = Q_{g.s.} - Q$ 1st excited state peak around **1.5 MeV**

Missing mass technique - ⁵⁰Ca(d,p)⁵¹Ca $m_{50Ca}^{2} + m_{p}^{2} - m_{d}^{2} + 2(E_{50Ca} + m_{50Ca})$ $-2(E_{50Ca} + m_{50Ca} + m_{d})(E_{p} + m_{p}) + 2P_{50Ca}P_{p}\cos(\theta_{p})$ $Q = m_{50Ca} + m_d - m_p - m_{51Ca}$ $m_{51Ca} =$ Q: energy released or absorbed **Excitation spectrum** Counts / 260 keV E_{A} : kinetic energy of particle A 10³ P_{A} : relativistic momentum of A $\theta_{\rm p}$: scattering angle of proton G.S. 1st Ex. 10² **Excitation spectrum** 10 $\mathbf{E}_{\mathbf{ex}} = \mathbf{Q}_{g.s.} - \mathbf{Q}$ 1st excited state peak around **1.5 MeV** 6 Eex [MeV] -2 4

Excitation spectrum

• Signal from **Ag foil** backing

• Contribution from **beam contaminants**

Summary and Future Outlook

- Spectroscopic study of ⁵¹Ca via ⁵⁰Ca(d,p)⁵¹Ca reaction in IRIS facility at TRIUMF.
- Detecting protons from the reaction and investigate the energy of the populated states in ⁵¹Ca.
- Clear observation of ground state and 1st excited state (~1.5 MeV).

Resolving contributions from background reaction and beam contaminants.

 \circ Differential cross section of the reaction, provide insights on N=32 shell closure.

Acknowledgement

Dr. Rituparna Kanungo - Supervisor Dr. Greg Christian - Supervisory committee member Dr. Ian Short - Supervisory committee member

Collaborators:

M. Alcorta, C. Andreoiu, C. Angus, S. Bagchi, N. Bhati, S.S. Bhattacharjee, S. Buck, K. Butler, M. Cavenaile, G. Christian, R. Coleman, G. Desmarais, E.G. Fuakye, P.E. Garrett, G. Grinyer, G. Hackman, K. Kapoor, J. Liang, C. O'Keefe, J. Park, T. Psaltis, M. Rocchini, N. Saei, D. Shah, M. Singh, P. Spagnoletti, M. Talebitaher, S. Upadhyayula, and F. Wu

RIUMF

Sora Ishida (Saint Mary's University)

IC – Beam Identification

Simulation - Kinematics

• Detection of **p** and ⁵¹**Ca**:

- Yu angle coverage: 122.73 deg 149.09 deg
- S3d1 angle coverage: 2.65 deg 8.38 deg

Sora Ishida (Saint Mary's University)

Target Thickness

Energy difference between "with-" and "without-target" runs.

$$t = \int_{E0}^{E1} \int \frac{1}{S(E)} dE$$

t: thicknessS(E): stopping power (-dE/dx)

Gate on ⁵⁰Ca peak

• Gating on the ⁵⁰Ca peak observed in the IC energy vs Si energy plot

- Not enough statistics
- Lose the data in the energy range of interest

TYuEnergy:TYuTheta {TYuMul==1 && TICEnergy>=980 && TICEnergy<1130}

TYuEnergy:TYuTheta {TYuMul==1 && gate50Ca}

Sora Ishida (Saint Mary's University)

Excitation spectrum

• Contribution from beam contaminants

Detector Calibration

- Alpha source and ⁴⁰Ar stable beam
- Convert ADC channel to energy value (MeV)

E = g(c - p)

• Determine gain value g for each channel of the detector

Sora Ishida (Saint Mary's University)

Proton detection

Protons in upstream

• Higher reaction cross section.

Upstream Si detector covrage:

- $\theta_{\text{lab}} = 122^{\circ} 149^{\circ}$
- $\theta_{\rm cm} \sim 10^\circ 20^\circ$

Energy of excited states

An increase in the energy of the first excited state (Huck et al., 1985).

- β -decay of ⁵²K
- Shell level scheme of ⁵²Ca
- Sign of shell closure at N = 32

Level scheme of ⁵²Ca Huck et al. (1985)

Neutron separation energy

Direct mass measurement of **K** and **Ca** isotopes (Gallant et al., 2012):

- More precise and accurate mass measurement
- Measurement of neutron separation energy (S_{2n})
- ⁵²Ca more bound by **1.74 MeV** than existing dataset.
- In agreement with the modern theoretical calculations

Charge radii of ⁵²Ca

Reinhard et al. (2017)

Sora Ishida (Saint Mary's University)

Theoretical aspect

Development of shell model/ interactions:

- Prediction of shell configuration in unstable nuclei.
- More realistic, reaching to non-observable properties.

Signs of shell closure at N = 32.

Discrepancy between experiment data and models.

Holt et al. (2012)

Radioactive ion beam – ⁵⁰Ca

Beam contaminants share a similar A/Q

Sora Ishida (Saint Mary's University)