

WNPPC 2025

Winter Nuclear & Particle Physics Conference

Jet broadening in a viscous nuclear medium

Hemanth Regi

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

Feb 16th, 2025, Banff, Canada

Supervisor: Dr. Gojko Vujanovic

Quark-Gluon Plasma

- The goal of heavy-ion collisions is to melt the nucleus to form a system where quarks and gluons are quasi-free particles, i.e. to create a QGP.
- During the pre-equilibrium stage, the quarks and gluons produced will have very different energy scales.
- High energy partons give jets, and only the lower energies will form the QGP.

Quark-Gluon Plasma

Borsányi, Szabolcs, et al. *Physics Letters B* 730 (2014): 99-104.

- Focusing on lower energy partons that participate in forming the QGP, a good description of their evolution is through hydrodynamics.
- To solve the fluid equations of motion, an Equation of State (EoS) is required, that couples pressure to temperature.
- The EoS is given by Lattice QCD.

Quark-Gluon Plasma

Borsányi, Szabolcs, et al. *Physics Letters B* 730 (2014): 99-104.

- At T<200 MeV (~ 2 Trillion K), the QCD equation of state can be described using hadronic degrees of freedom (i.e. EoS is perturbative in the effective theory of hadrons).
- At T>350, MeV behavior is similar to pQCD.
- Thus, we have a good understanding of the QCD EoS: at high temperatures the EoS is described by quarks and gluons, but as we go to lower temperatures a continuous transition to hadrons is seen.

QCD Coupling and Asymptotic Freedom

- Jet partons have much higher energy scales than the temperature of the QGP.
- At those energy scales, there is a significant running of the strong coupling.
- In fact, for Q > ~10 GeV, α_s is small enough for perturbation theory to work. This is because of the asymptotic freedom of QCD.

$$\alpha_s(Q^2) \sim \frac{1}{\ln Q^2/\Lambda_{QCD}^2}$$

Particle Data Group, K. Olive et al., Chin.Phys. C38, 090001 (2014).

QCD Coupling and Asymptotic Freedom

- Jet partons have much higher energy scales than the temperature of the QGP.
- At those energy scales, there is a significant running of the strong coupling.
- In fact, for Q > ~10 GeV, α_s is small enough for perturbation theory to work. This is because of the asymptotic freedom of QCD.
- Partons at these high energies, will see a very dilute QGP, given that α_s is so small.
- This allows the use of perturbation theory when describing how jet partons interact with QGP partons.
- Let's explore how jet partons evolve in the vacuum vs the QGP medium.

$$\alpha_s(Q^2) \sim \frac{1}{\ln Q^2/\Lambda_{QCD}^2}$$

Particle Data Group, K. Olive et al., Chin.Phys. C38, 090001 (2014).

Jets in Vacuum

• Heavy quarks are further unique jet probes as we can tag on them.

Jets in Medium

- Jet passing through QGP deviates from its path due to collisions with particles in the medium.
- These collisions would ultimately lead to Brownian motion of particles in the jet... however we have hadronization
- Collision can be described using the transport coefficient *q̂* : the average squared transverse momentum broadening per unit length, in the medium.

Boltzmann Equation of Parton Transport

- The multiple scattering of jet partons in the QGP is described by the Boltzmann equation.
- Governs the time evolution of distribution functions of particles in a medium and the jet.
- Applicable for weakly interacting and dilute systems.
- In thermal equilibrium, f is known $f_0 = [\exp \beta (p \cdot u) \pm 1]^{-1}$

Boltzmann Equation of Parton Transport

- The multiple scattering of jet partons in the QGP is described by the Boltzmann equation.
- Governs the time evolution of distribution functions of particles in a medium and the jet.
- Applicable for weakly interacting and dilute systems.
- In thermal equilibrium, f is known $f_0 = [\exp \beta (p \cdot u) \pm 1]^{-1}$
- The collision kernel for 2 particles in the medium gives the scattering rate

$$\begin{aligned} \frac{d^4N}{d^4x} &= dR \\ &= \int \frac{d^3p_1}{(2\pi)^3 2E_1} f(p_1) \frac{d^3p_2}{(2\pi)^3 2E_2} f(p_2) \frac{d^3p_3}{(2\pi)^3 2E_3} [1 \pm f(p_3)] \frac{d^3p_4}{(2\pi)^3 2E_4} [1 \pm f(p_4)] |M|^2 (2\pi)^4 \delta^{(4)} \left(p_1 + p_2 - p_3 - p_4\right) \end{aligned}$$

Thermal Equilibrium and Isotropy

- System in thermal equilibrium is isotropic (spherically symmetric) in momentum space.
- The Boltzmann equation allows for the system to go away from thermal equilibrium.
- Going off-equilibrium manifests as the momentum distribution becoming anisotropic.
- An anisotropic momentum distribution of particles at the microscopic scale generates viscous effects in the (macroscopic) fluid.
- The goal of my work is to constrain the viscosity of the QGP by studying how jets are quenched in the QGP.

Relativistic Hydrodynamics and Viscosity

 The link between the microscopic distribution function f and the macroscopic stress-energy tensor is given by:

$$T_{ideal}^{\mu\nu} + \pi^{\mu\nu} = \int \frac{d^3p}{(2\pi)^3 2E} p^{\mu} p^{\nu} f_0(p \cdot u) + \int \frac{d^3p}{(2\pi)^3 2E} p^{\mu} p^{\nu} \delta f(p \cdot u)$$

arXiv:0909.0754 [nucl-th]

Relativistic Hydrodynamics and Viscosity

 The link between the microscopic distribution function f and the macroscopic stress-energy tensor is given by:

$$T_{ideal}^{\mu\nu} + \pi^{\mu\nu} = \int \frac{d^3p}{(2\pi)^3 2E} p^{\mu} p^{\nu} f_0(p \cdot u) + \int \frac{d^3p}{(2\pi)^3 2E} p^{\mu} p^{\nu} \delta f(p \cdot u)$$

- The equilibrium (ideal) part of stress-energy tensor is given by f_0
 - For an ideal fluid, only diagonal terms remain in the stress-energy tensor.
- The viscous part of the stress-energy tensor is encoded in δf .
 - For non-ideal fluids, off-diagonal terms become important.

arXiv:0909.0754 [nucl-th]

Relativistic Hydrodynamics and Viscosity

 The link between the microscopic distribution function f and the macroscopic stress-energy tensor is given by:

$$T_{ideal}^{\mu\nu} + \pi^{\mu\nu} = \int \frac{d^3p}{(2\pi)^3 2E} p^{\mu} p^{\nu} f_0(p \cdot u) + \int \frac{d^3p}{(2\pi)^3 2E} p^{\mu} p^{\nu} \delta f(p \cdot u)$$

- The equilibrium (ideal) part of stress-energy tensor is given by f_0
 - For an ideal fluid, only diagonal terms remain in the stress-energy tensor.
- The viscous part of the stress-energy tensor is encoded in δf .
 - For non-ideal fluids, off-diagonal terms become important.
- These off-diagonal contributions are also present in the scattering rate, through the viscous correction to the distribution function:

$$\frac{d^4N}{d^4x} = dR(f_1, f_2, f_3, f_4) \to dR(f_1, f_2 + \delta f_2, f_3, f_4 + \delta f_4)$$

where,

$$\delta f(p) = \frac{c}{2} f(p) \left(1 \pm f(p) \right) \frac{p^{\alpha} p^{\beta}}{T^2} \frac{\pi_{\alpha\beta}}{\epsilon + P}$$

arXiv:0909.0754 [nucl-th]

Go tar, Tog

Scattering Channels for Jet-Medium Interactions

8 Feynman diagram requires mass and viscous corrections: Pt mmm 00000000 0000000 and a start of the Jogo **Medium** Go far, together.

Scattering Channels for Jet-Medium Interactions

Results

Quark-Gluon scattering in t channel

- Rates of gluon scattering and light quark scattering are at hand.
- Heavy flavour mass significantly affects the inviscid rate.

Results

Quark-Gluon scattering in t channel

10⁰

 10^{1}

10²

E/T

- No viscous correction for light flavour quark and gluon scatterings in Forward Scattering Approx.
- The viscous correction with heavy flavour masses is small.

 10^{4}

10³

Summary and Outlook

- Computed rates for gluons, light and heavy quarks.
- Heavy quark mass scale affects the ideal rate.
- Viscous effects are only observed for heavy flavour.
- Next steps:
 - Implement these viscous rates inside of Monte Carlo event generators for jets.
 - Heavy flavour jets will be used to constrain shear viscosity of QGP.

Thank You

Questions?

 Phenomenological study based on the modified rate and transverse momentum broadening. dR

$$= \int \frac{d^3 p_1}{(2\pi)^3 2E_1} f(p_1) \frac{d^3 p_2}{(2\pi)^3 2E_2} f(p_2) \frac{d^3 p_3}{(2\pi)^3 2E_3} [1 \pm f(p_3)] \frac{d^3 p_4}{(2\pi)^3 2E_4} [1 \pm f(p_4)] |M|^2 (2\pi)^4 \delta^{(4)} (p_1 + p_2 - p_3 - p_4)$$

$$R \approx \frac{1}{\sqrt{\lambda}} \int \frac{d^3 p_2}{2E_2} f(p_2) \int dt \frac{1}{4} |M(s,t)|^2 \{1 \pm f[p_4(s,t)]\}$$

• Phenomenological study based on the modified rate and transverse momentum broadening.

$$\frac{d^3R}{d^3p_1} = \frac{1}{(2\pi)^8 16E_1} \int \frac{d^3p_2}{E_2} f(p_2) \int \frac{d^3p_3}{E_3} \int \frac{d^3p_4}{E_4} (1 \pm f(p_4)) |\mathcal{M}|^2 \delta^{(4)}(p_1 + p_2 - p_3 - p_4).$$

$$R \approx \frac{1}{\sqrt{\lambda}} \int \frac{d^3 p_2}{2E_2} f(p_2) \int dt \frac{1}{4} |M(s,t)|^2 \{1 \pm f[p_4(s,t)]\}$$

$$E_1 \text{ is fixed. } s = (p_1 + p_2)^2$$

• Phenomenological study based on the modified rate and transverse momentum broadening.

$$\frac{d^3R}{d^3p_1} = \frac{1}{(2\pi)^8 16E_1} \int \frac{d^3p_2}{E_2} f(p_2) \int \frac{d^3p_3}{E_3} \int \frac{d^3p_4}{E_4} (1 \pm f(p_4)) |\mathcal{M}|^2 \delta^{(4)}(p_1 + p_2 - p_3 - p_4).$$

$$R \approx \frac{1}{\sqrt{\lambda}} \int \frac{d^3 p_2}{2E_2} f(p_2) \int dt \frac{1}{4} |M(s,t)|^2 \{1 \pm f[p_4(s,t)]\}$$

$$E_1 \text{ is fixed. } s = (p_1 + p_2)^2$$
To fix s, sample $E_2, \cos\theta_2, \phi_2$:
$$\int \sqrt{(E_2^2 - m_2^2)} dE_2 f(p_2) \int d\cos\theta_2 \int d\phi_2$$

• Phenomenological study based on the modified rate and transverse momentum broadening.

$$\frac{d^3R}{d^3p_1} = \frac{1}{(2\pi)^8 16E_1} \int \frac{d^3p_2}{E_2} f(p_2) \int \frac{d^3p_3}{E_3} \int \frac{d^3p_4}{E_4} (1 \pm f(p_4)) |\mathcal{M}|^2 \delta^{(4)}(p_1 + p_2 - p_3 - p_4).$$

• Viscous corrected rate sampling is more challenging.

$$\delta f(p) = \frac{C}{2} f(p) \left(1 \pm f(p)\right) \frac{p^{\alpha} p^{\beta}}{T^2} \frac{\pi_{\alpha\beta}}{\epsilon + \mathcal{P}}.$$

- Angular dependency in the rate from δf needs to be considered while sampling.
- Extend the theory from Forward Scattering Approximation to a generalized scattering theory.
- Photon production in QGP with mass and viscous correction is another prospect for the developed theoretical technique.

Boltzmann Equation of Parton Transport

- Governs the time evolution of distribution functions of particles in a medium.
- Applicable for weakly interacting and dilute systems.
- In thermal equilibrium, f is known $f_0 = [\exp \beta (p \cdot u) \pm 1]^{-1}$
- The collision kernel for 2 particles in the medium gives the scattering rate:

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla f = C[f]$$

$$\frac{d^4N}{d^4x} = dR$$

= $\int \frac{d^3p_1}{(2\pi)^3 2E_1} f(p_1) \frac{d^3p_2}{(2\pi)^3 2E_2} f(p_2) \frac{d^3p_3}{(2\pi)^3 2E_3} [1 \pm f(p_3)] \frac{d^3p_4}{(2\pi)^3 2E_4} [1 \pm f(p_4)] |M|^2 (2\pi)^4 \delta^{(4)} (p_1 + p_2 - p_3 - p_4)$

The scattering rate of a single jet parton with momentum p₁

$$\frac{d^{7}N}{d^{4}xd^{3}p_{1}} = \frac{d^{3}R}{d^{3}p_{1}} = \frac{1}{(2\pi)^{8}16E_{1}} \int \frac{d^{3}p_{2}}{(2\pi)^{3}2E_{2}} f(p_{2}) \int \frac{d^{3}p_{3}}{(2\pi)^{3}2E_{3}} \int \frac{d^{3}p_{4}}{(2\pi)^{3}2E_{4}} [1 \pm f(p_{4})] |M|^{2} \delta^{4} (p_{1} + p_{2} - p_{3} - p_{4})$$

Forward Scattering Approximation

• According to Forward Scattering Approximation:

 $p_1 \gg p_2 \gg q \;\; \Rightarrow \;\; p_1 \approx p_3$

- Consequently, we will neglect terms such as $\frac{q^0}{E_1}$, $\frac{q^0}{E_2}$, etc.
- Light quarks (u,d,s) masses are neglected. Charm and Bottom quark, masses retained.
- Mandelstam *s channel* diagram contributions are neglected in matrix element.

•
$$s = (p_1 + p_2)^2 = (p_3 + p_4)^2$$

• $t = (p_1 - p_3)^2 = (p_4 - p_2)^2$
• $u = (p_1 - p_4)^2 = (p_3 - p_2)^2$

The Big-Bang and Early Universe

https://cmb.physics.wisc.edu/pub/tutorial/bigbang.html

University of Regina

Go far, together.

- Explains the evolution of the universe from an extremely hot and dense state.
- Isotropic and homogenous.
- Quark Gluon Plasma State of matter filled in the universe at the first microsecond.