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• The goal of heavy-ion collisions is to melt the nucleus to form a system where quarks and gluons are quasi-free 

particles, i.e. to create a QGP.

• During the pre-equilibrium stage, the quarks and gluons produced will have very different energy scales.

• High energy partons give jets, and only the lower energies will form the QGP.
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Quark-Gluon Plasma



• Focusing on lower energy partons that participate in forming the QGP, a good description of their evolution is through 

hydrodynamics.

• To solve the fluid equations of motion, an Equation of State (EoS) is required, that couples pressure to temperature. 

• The EoS is given by Lattice QCD. 

3

Quark-Gluon Plasma

Borsányi, Szabolcs, et al. Physics Letters B 730 (2014): 99-104.



• At T<200 MeV (~ 2 Trillion K), the QCD equation of state can be described using hadronic degrees of freedom (i.e. 

EoS is perturbative in the effective theory of hadrons).

• At T>350, MeV behavior is similar to pQCD. 

• Thus, we have a good understanding of the QCD EoS: at high temperatures the EoS is described by quarks and 

gluons, but as we go to lower temperatures a continuous transition to hadrons is seen. 
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Quark-Gluon Plasma

Borsányi, Szabolcs, et al. Physics Letters B 730 (2014): 99-104.



• Jet partons have much higher energy 

scales than the temperature of the QGP.

• At those energy scales, there is a 

significant running of the strong coupling.

• In fact, for Q > ~10 GeV, 𝛼𝑠 is small 

enough for perturbation theory to work. 

This is because of the asymptotic freedom 

of QCD.
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QCD Coupling and Asymptotic Freedom

𝛼𝑠 𝑄2 ∼
1

ln 𝑄2/Λ𝑄𝐶𝐷
2

Particle Data Group, K. Olive et al., Chin.Phys. C38, 
090001 (2014).



• Jet partons have much higher energy 

scales than the temperature of the QGP.

• At those energy scales, there is a 

significant running of the strong coupling.

• In fact, for Q > ~10 GeV, 𝛼𝑠 is small 

enough for perturbation theory to work. 

This is because of the asymptotic freedom 

of QCD.

• Partons at these high energies, will see a 

very dilute QGP, given that 𝛼𝑠 is so small.

• This allows the use of perturbation theory 

when describing how jet partons interact 

with QGP partons. 

• Let’s explore how jet partons evolve in the 

vacuum vs the QGP medium. 
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Jets in Vacuum

• The evolution of a highly virtual quark in 
the vacuum is dominated by 
Bremsstrahlung radiation of gluons. 

• Extensively studied in electron-positron 
collisions in vacuum. Thus jets are 
vacuum-calibrated probes. 

• Heavy quarks are further unique jet 
probes as we can tag on them.

https://cms.cern/news/jets-cms-and-determination-their-energy-scale



• Jet passing through QGP deviates from its path due 
to collisions with particles in the medium.

• These collisions would ultimately lead to Brownian 
motion of particles in the jet… however we have 
hadronization 

• Collision can be described using the transport 
coefficient ො𝑞 ∶ the average squared transverse 
momentum broadening per unit length, in the 
medium.

8

Jets in Medium



• The multiple scattering of jet partons in the QGP is described 

by the Boltzmann equation. 

• Governs the time evolution of distribution functions of 

particles in a medium and the jet. 

• Applicable for weakly interacting and dilute systems.

• In thermal equilibrium, 𝑓 is known 𝑓0 = exp 𝛽 𝑝 ⋅ 𝑢 ± 1 −1 
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Boltzmann Equation of Parton Transport
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• The multiple scattering of jet partons in the QGP is described 

by the Boltzmann equation. 

• Governs the time evolution of distribution functions of 

particles in a medium and the jet. 

• Applicable for weakly interacting and dilute systems.

• In thermal equilibrium, 𝑓 is known 𝑓0 = exp 𝛽 𝑝 ⋅ 𝑢 ± 1 −1 

• The collision kernel for 2 particles in the medium gives the 

scattering rate
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Boltzmann Equation of Parton Transport
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Thermal Equilibrium and Isotropy

Thermal 
Equilibrium

Isotropic 
System

Thermal 
Non-

Equilibrium

Anisotropic 
System

• System in thermal equilibrium is isotropic (spherically symmetric) in momentum space. 
• The Boltzmann equation allows for the system to go away from thermal equilibrium.
• Going off-equilibrium manifests as the momentum distribution becoming anisotropic. 
• An anisotropic momentum distribution of particles at the microscopic scale generates viscous effects in the (macroscopic) 

fluid.
• The goal of my work is to constrain the viscosity of the QGP by studying how jets are quenched in the QGP.

Isotropy Anisotropy



• The link between the microscopic distribution function 𝑓 and the 

macroscopic stress-energy tensor is given by:

 

arXiv:0909.0754 [nucl-th]
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Relativistic Hydrodynamics and Viscosity
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https://arxiv.org/abs/0909.0754


• The link between the microscopic distribution function 𝑓 and the 

macroscopic stress-energy tensor is given by:

• The equilibrium (ideal) part of stress-energy tensor is given by 𝑓0

• For an ideal fluid, only diagonal terms remain in the stress-energy tensor.

• The viscous part of the stress-energy tensor is encoded in 𝛿𝑓.

• For non-ideal fluids, off-diagonal terms become important.

 

arXiv:0909.0754 [nucl-th]
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• The link between the microscopic distribution function 𝑓 and the 

macroscopic stress-energy tensor is given by:

• The equilibrium (ideal) part of stress-energy tensor is given by 𝑓0

• For an ideal fluid, only diagonal terms remain in the stress-energy tensor.

• The viscous part of the stress-energy tensor is encoded in 𝛿𝑓.

• For non-ideal fluids, off-diagonal terms become important.

• These off-diagonal contributions are also present in the scattering rate, 

through the viscous correction to the distribution function:

       where,

                    𝛿𝑓 𝑝 =
𝐶

2
𝑓 𝑝 1 ± 𝑓 𝑝

𝑝𝛼𝑝𝛽

𝑇2

𝜋𝛼𝛽

𝜖+𝑃

arXiv:0909.0754 [nucl-th]
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Relativistic Hydrodynamics and Viscosity
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https://arxiv.org/abs/0909.0754
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• 8 Feynman diagram requires mass and viscous corrections:

Scattering Channels for Jet-Medium Interactions

Medium

Jet
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Scattering Channels for Jet-Medium Interactions

Jet

Medium
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• Rates of gluon scattering and light quark scattering 
are at hand.

• Heavy flavour mass significantly affects the inviscid 
rate.

Quark-Gluon scattering in t channel 

Results 
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• No viscous correction for light flavour quark and 
gluon scatterings in Forward Scattering Approx.

• The viscous correction with heavy flavour masses is 
small.

Quark-Gluon scattering in t channel 

Results 



• Computed rates for gluons, light and heavy quarks.

• Heavy quark mass scale affects the ideal rate.

• Viscous effects are only observed for heavy flavour.

• Next steps:

• Implement these viscous rates inside of Monte Carlo event generators for jets.

• Heavy flavour jets will be used to constrain shear viscosity of QGP.  

Summary and Outlook



Questions?
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Thank You



• Phenomenological study based on the modified rate and transverse momentum broadening.

• Rate expressed in terms of s and t :

                              𝑅 ≈
1

√𝜆


𝑑3𝑝2

2𝐸2
𝑓 𝑝2  𝑑𝑡

1

4
𝑀(𝑠, 𝑡) 2{1 ± 𝑓[𝑝4(𝑠, 𝑡)]}
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Future Prospects
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Future Prospects

𝐸1 is fixed. 𝑠 = 𝑝1 + 𝑝2
2 



• Phenomenological study based on the modified rate and transverse momentum broadening.

• Rate expressed in terms of s and t :

                              𝑅 ≈
1

√𝜆


𝑑3𝑝2

2𝐸2
𝑓 𝑝2  𝑑𝑡

1

4
𝑀(𝑠, 𝑡) 2{1 ± 𝑓[𝑝4(𝑠, 𝑡)]}

                                                                                                                             

To fix s, sample 𝐸2, 𝑐𝑜𝑠𝜃2, 𝜙2:                                   

 𝐸2
2  − 𝑚2

2 𝑑𝐸2𝑓(𝑝2) 𝑑cos𝜃2 𝑑𝜙2   
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Future Prospects

𝐸1 is fixed. 𝑠 = 𝑝1 + 𝑝2
2 



• Phenomenological study based on the modified rate and transverse momentum broadening.

• Rate expressed in terms of s and t :

                              𝑅 ≈
1

√𝜆


𝑑3𝑝2

2𝐸2
𝑓 𝑝2  𝑑𝑡

1

4
𝑀(𝑠, 𝑡) 2{1 ± 𝑓[𝑝4(𝑠, 𝑡)]}

                                                                                                                             

To fix s, sample 𝐸2, 𝑐𝑜𝑠𝜃2, 𝜙2:                                   𝑡 (= 𝑝1 − 𝑝3
2) sampling: 

 𝐸2
2  − 𝑚2

2 𝑑𝐸2𝑓(𝑝2) 𝑑cos𝜃2 𝑑𝜙2                      𝑡 = [𝑡_ , 𝑡+]
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Future Prospects

𝐸1 is fixed. 𝑠 = 𝑝1 + 𝑝2
2 



• Viscous corrected rate sampling is more challenging.

• Angular dependency in the rate from 𝛿𝑓 needs to be considered while sampling.

• Extend the theory from Forward Scattering Approximation to a generalized scattering theory.

• Photon production in QGP with mass and viscous correction is another prospect for the developed theoretical 

technique.
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Future Prospects



• Governs the time evolution of distribution functions of 

particles in a medium.

• Applicable for weakly interacting and dilute systems.

• In thermal equilibrium, 𝑓 is known 𝑓0 = exp 𝛽 𝑝 ⋅ 𝑢 ± 1 −1 

• The collision kernel for 2 particles in the medium gives the 

scattering rate:

• The scattering rate of a single jet parton with momentum 𝑝1
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Boltzmann Equation of Parton Transport
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• According to Forward Scattering Approximation:

                                                                          𝑝1 ≫ 𝑝2 ≫ 𝑞   ⇒  𝑝1≈ 𝑝3

• Consequently, we will neglect terms such as 
𝑞0

𝐸1
,

𝑞0

𝐸2
 , etc.

• Light quarks (u,d,s) masses are neglected. Charm and Bottom quark, masses retained.
• Mandelstam s channel diagram contributions are neglected in matrix element.

Forward Scattering Approximation

▪ 𝑠 = 𝑝1 + 𝑝2
2 = 𝑝3 + 𝑝4

2

▪ 𝑡 = 𝑝1  − 𝑝3
2 = 𝑝4  − 𝑝2

2

▪ 𝑢 = 𝑝1  − 𝑝4
2 = 𝑝3  − 𝑝2

2



• Explains the evolution of the universe from an extremely hot and dense state.

• Isotropic and homogenous.

• Quark Gluon Plasma – State of matter filled in the universe at the first microsecond.

 .
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The Big-Bang and Early Universe

https://cmb.physics.wisc.edu/pub/tutorial/bigbang.html
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