Supporting Measurements for Current and Future Argon Dark Matter Detectors with Argon-1

Michael Perry – PhD Candidate Carleton University WNPPC 2025 – Banff, Alberta February 14, 2025

Outline

- Argon-1 at Carleton
 - Detector overview
- Measurements with Argon-1
 - Scintillation quenching, crosstalk, hit pattern identification
- ARGO and ARGOlite
 - The future of argon dark matter detectors

Argon-1 at Carleton

- Modular liquid argon detector in the COLD Lab at Carleton University Liquid argon cryostat containing ~35kg LAr (~10% within AV)
- Signal detection facilitated by Hamamatsu MPPC (SiPMs) 4x64 (256) individual channels readout – Unique granularity of 3mm² channel area
- Full data acquisition and purification system

WNPPC 2025

Alpha Scintillation Quenching

Measuring alpha scintillation quenching directly

- DEAP-3600 published model for alpha scintillation quenching factor as a function of energy Summer 2024
- Data point from <u>T. Doke *et al.* (1988)</u>, and DEAP data are all > 5 MeV
- Model must extrapolate to low E

ERs : E [keVee] = $\frac{\#PE [PE]}{Y [PE / keVee]}$ $\alpha s (+ other NRs): E [keVee] = \frac{\#PE [PE]}{Y \times QF(E)}!$ WNF

Why do we need to know quenching factors?

²²⁰Rn direct deployment for high energy points

Argon gas is flowed through ²²⁰Rn source, purified and sent into Argon-1 to mix with liquid volume

• Deployment of ²²⁰Rn mixed uniformly in detector volume allows for direct remeasurement of high E points, benchmark for lower E measurements

Peaks are well resolved in PE space

where μ_{PE} is the mean of the fit to the PE spectrum, T_d is the kinetic energy of the daughter nucleus, QF_d is the recoil heavy nucleus quenching factor, and Y is the light yield of Argon-1.

Probing Lower E - α Sources Made at Carleton

- Copper substrate bathed in focused ²²²Rn gas source 3 weeks
- A stable ²¹⁰Po (5.3 MeV, ~1 Bq) source remains
- Evaporative coating applied to source to degrade spectrum
- Technical paper on source production in progress

Cold Source Deployment

• Sources are inserted directly into Argon-1 AV to measure alpha spectrum

10

Preliminary results for alpha quenching in Argon-1

• Future work aims to lower thresholds to probe sub 1 MeV quenching factors

11

Other Measurements and Ongoing Studies

Ongoing/planned measurements

- Dedicated studies of internal and external SiPM cross talk using Kr^{83m} and Cs¹³⁷ gamma source data and varying overvoltage applied to SiPMs – Benchmark ARGO SiPM Simulations
- Surface alpha rejection studies using hit patterns on high granularity SiPMs with radon doped acrylic panel
- Deployment of Pyrene coated, radon doped acrylic tube via alpha source deployment tube to assist DEAP analysis

ARGO & ARGOlite

WNPPC 2025

ARGO – The next (next) generation argon DM detector

- Future detector planned to be located at SNOLAB Cube Hall (2030s)
- 400 tonnes of low-radioactivity (low ³⁹Ar) underground argon
- Goal of 3000 tonne year exposure, will probe well into argon neutrino fog

Effort towards ARGO is ramping up

• Detailed simulations on-going for ARGO (SiPM physics, position reconstruction, background estimates)

Hit pattern from ARGO simulation for an event close to the surface of the detector (Asish Moharana) WNPPC 2025

Effort towards ARGO is ramping up - ARGOlite

- A prototype for ARGO coming online in 2028
- Located at SNOLAB, will use DEAP-3600 water shield tank and process systems
- 2m² pixelated photodetector coverage (using Sherbrooke dSiPMs)
- Will run for 3 years to finalize ARGO design by 2031

Conclusion & Outlook

- Argon-1 is actively studying physics useful to current and future liquid argon dark matter detectors
- Quenching factors, crosstalk and hit pattern studies are all useful for energy reconstruction and background negation
- ARGO is the future of liquid argon DM searches, with the ARGOlite prototype planned to operate in former DEAP-3600 tank

Canada Foundation for Innovation Fondation canadienne pour l'innovation

18

Thanks! Questions?

NPPC 2025

Argon-1 demonstrates pulseshape discrimination (PSD) with SiPMs **Degraded Alpha Spectrum** COPB Fpromp

- SiPMs have a slower reset time than PMTs, making charge-based PSD difficult
- Using peak height information for SiPMs works quite well given uniform response, varying prompt window

-20

n q 0.8

0.7

0.6

10-2

10⁻³

Extracting Quenching Factors

$$QF = \frac{\mu_{PE} - (T_d \times QF_d \times Y)}{Y \times (Q_\alpha - T_d)}$$
(5.3)

where μ_{PE} is the mean of the fit to the PE spectrum, T_d is the kinetic energy of the daughter nucleus, QF_d is the recoil heavy nucleus quenching factor, and Y is the light yield of Argon-1.

 Peaks fit; quenching calculation corrected for scintillation produced by daughter nucleus (data from <u>https://www.nndc.bnl.gov/nudat3/</u>)

