

Current results and a future outlook Very large neutrino telescopes

Darren R Grant — **WNPPC** — **February 2024**

SFU

Canada Excellence **Research Chairs**

Chaires d'excellence en recherche du Canada

Harnessing nature's cosmic accelerators

lattice of photomultipliers

charged secondary particles produced as the neutrino disappears

nuclear interaction

neutrino

Principles of high-energy neutrino detection - water Cherenkov

TeV-scale+

CC Muon Neutrino

Neutral Current / Electron Neutrino

CC Tau Neutrino

track

factor of \approx 2 energy resolution < 1° angular resolution at high energies

cascade

≈ ±15% deposited energy resolution
 ≈ 10° angular resolution (at energies ≥ 100 TeV)

"double-bang" and other signatures

(τ decay length is 50 m/ PeV)

IceCube Neutrino Observatory

• Approximate cubic-km-scale hybrid observatory

• Detection of Cherenkov photons with over 5000 digital optical modules (DOMs) deployed on a hexagonal grid of 86 'strings'

• DOM and string spacing defines the energy response and thus physics of each detector region

	Spacing [m]		Energy
	Horiz.	Vertical	threshold [GeV]
IceCube	125	17	~100
DeepCore	~50	7	~5

50 m 1450 m 2450 m 2820 m

The high-energy astrophysical neutrino flux

M. Ackermann, COSPAR 2024

Evidence of astrophysical tau neutrinos

- Combined analysis of track and shower-type events provide strong constraints on the muon neutrino contribution
- 7 tau neutrino candidates identified using machine learning techniques
- Identification of tau neutrino events breaks degeneracy between electron neutrino and tau neutrino showers

Emerging extragalactic sources

- Preliminary results of analysis with extended dataset (13 years); local NGC 1068 significant is 5 sigma; post trial corrected 4 sigma.
- Best fit spectral index -3.4 (9 year: -3.2)
- Represents a few percent of the overall diffuse astrophysical neutrino flux

A Galactic component

Neutrinos from the Milky Way for the first time (4.5 sigma post trial); No individual sources yet observed at high significance due to current limits in angular resolution and statistics. Small fraction of the total observed diffuse flux.

Science Vol 380, Issue 6652

Deep-sea telescope detects neutrino with highest energy ever recorded

Leveraging Canada's investments in deep ocean science for particle astrophysics

• Neptune observatory instruments the Cascadia basin (2600m depth abyssal plane) with power and communications. Near constant temperature 2C year-round; currents ~0.1m/s

Leveraging Canada's investments in deep ocean science for particle astrophysics

• Neptune observatory instruments the Cascadia basin (2600m depth abyssal plane) with power and communications. Near constant temperature 2C year-round; currents ~0.1m/s

P-ONE predecessor — site characterization

Pathfinder Phase 1 (2018 - 2023)

• Measured attenuation after 2 years of monitoring = 27.7 - 1.3 / + 1.9 m at 450nm Stable over the period of data collection • Compatible with measurements at Mediterranean sites

P-ONE-1

Pathfinder Phase 1 (2018 – 2023)

- 1 km mooring line with 20 modules employing a connector-less design
- Sub-ns synchronization
- In-line network infrastructure

For details PoS (ICRC2023) 1219

P-ONE-1

Calibration program

Muon scintillation tracker

1000 m

P-ONE-1

2025

Pathfinder Phase 1 (2018 - 2023)

• 1 km mooring line with 20 modules employing a connector-less design Sub-ns synchronization

In-line network infrastructure

P-ONE Demonstrator

2025

Pathfinder Phase 1 (2018 – 2025) Demonstrator (first cluster) *Phase 2 (2025 – 2028)* ~20M project **funding secured** (2023 CFI-IF/ERC/NSF)

2025

Demonstrator (first cluster) *Phase 2 (2025 — 2028)* ~20M project funding secured (2023 CFI-IF/ERC/NSF)

Pathfinder Phase 1 (2018 – 2025)

P-ONE Phase 3 (2028+) O(100M)-scale

Summary

From discovery to the era of a new field in astroparticle physics...

- Discovered high-energy cosmic neutrino flux is robust energy density similar to that of gamma rays and cosmic rays mounting evidence emerging of the first extragalactic and Galactic sources
- Global program underway to develop new and enhanced neutrino observatories
 - a new window through which to study the extreme universe; from fundamental neutrino properties to cosmic accelerators

Connect

to ONC node

-ONE JB

Backup slides

Atmospheric neutrino oscillations

- Natural beam of neutrinos generated in cosmic ray air showers
 - All flavors, neutrino + antineutrino
 - Broad energy band (GeV TeV) and baselines (20 -12,700 km) through variable Earth density profile
- Flavour Mass $|v_{\alpha}\rangle = \sum U^*_{\alpha k} |v_{k}\rangle$

U_{PMNS} parameterised by...

- Three mixing angles:
- $\theta_{12}, \theta_{13}, \theta_{23}$
- δCP

- Two mass splittings...
- Δm²₂₁ ~ 10⁻⁵ eV²
- ∆m²₃₂~ 10⁻³ eV²

Atmospheric neutrino oscillations (3 x 3 mixing)

Atmospheric neutrino oscillations (3 x 3 mixing)

- High purity neutrino sample (9.3 years; less than 1% atmospheric muon contamination

https://arxiv.org/pdf/2405.02163

Atmospheric neutrino oscillations (3+1 sterile neutrino; 4 x 4 mixing)

 Individual analyses that focus on different energy regimes, leveraging differences in the potential signals and the impacts of systematics.

to mixing angle for 2-4 and 3-4 mass eigenstates and phase 2-4

Atmospheric neutrino oscillations (3+1 sterile neutrino; 4 x 4 mixing)

- Individual analyses that focus on different energy regimes, leveraging differences in the potential signals and the impacts of systematics.
- Low-energy (5 150 GeV)
 - 7.5yr dataset
 - Fit compatible with the null hypothesis

$|U_{\mu4}|^2 < 0.053, |U_{\tau4}|^2 < 0.057$ @90%CL

https://arxiv.org/pdf/2405.08070 Atmospheric neutrino oscillations (3+1 sterile neutrino; 4 x 4 mixing)

- Individual analyses that focus on different energy regimes, leveraging differences in the potential signals and the impacts of systematics.
- Low-energy (5 150 GeV)
 - 7.5yr dataset
 - Fit compatible with the null hypothesis
- High-energy (500 GeV 100 TeV)
 - 10.7 yr dataset
 - Improved muon neutrino fitter providing separation of starting and through-going events
 - Fit compatible with the null hypothesis (p-value 3.1%)

Dark matter search (indirect)

Silk, Olive and Srednicki, '85 Gaisser, Steigman & Tilav, '86 Freese, '86

Krauss, Srednicki & Wilczek, '86 Gaisser, Steigman & Tilav, '86

Indirect dark matter search (Sun)

Phys. Rev. D 105, 062004

Indirect dark matter search (Milky Way Galactic Centre)

Phys. Rev. D108 102004

<u>Atmospheric neutrino oscillations (decoherence from quantum gravity - ν VBH)</u>

Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02436-w

<u>Atmospheric neutrino oscillations (decoherence from quantum gravity - ν VBH)</u>

Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02436-w

Future directions - IceCube Upgrade

- Construction underway, deployment December
 2025
- Scientific reach:
 - Precision oscillation measurements
 - Recalibration of the complete IceCube dataset (including high-energy regime); improved angular and energy resolutions
- More than 800 next generation modules and precision calibration devices
- Reduced inter-module spacing
- Deep-ice deployment to 2600 m

Future directions - IceCube Upgrade

• 3-year sensitivity estimates

- Improved sensitivity to the atmospheric mixing angle, including octant, and mass splitting
- 5% uncertainty on the normalization of the tau neutrino normalization and test of PMNS unitarity
- 3σ determination of the mass ordering (5σ with JUNO)

KM3NeT ultra high-energy event

KM3NeT ultra high-energy event

P-ONE Logistics Chain

