Measuring Cross Section Enhancement of the ⁷Li(¹H, α) α Reaction in Lithium Bearing Materials

Preliminary Results

Aaron English

February 13, 2025

Carleton Univeristy Department of Electronics

Project Background

Theory

Initial Results

Next Steps

Project Background

Motivation

Project goal: Extend measurement of cross section enhancement

- outstanding question about source of enhancement
- few measurements for $^{7}\text{Li}(^{1}\text{H},\alpha)\alpha$
- more for ^{2}H + ^{2}H
- exploratory

Potential benefit to power generating fusion technology

- directly
- wall materials
- \cdot fuel breeding
- other?

Theory

Inelastic scattering of nuclei

Inelastic scattering of nuclei

Must overcome, or tunnel through, coulombic barrier

Inelastic scattering of nuclei

Must overcome, or tunnel through, coulombic barrier

Reaction is probabilistic

$$\sigma(E) = \frac{S(E)}{E} \exp\left(-\sqrt{\frac{E_G}{E}}\right) \tag{1}$$

- S(E) Astrophysical S-factor
- E is the CM energy
- E_G is the Gamow Energy– $E_G \equiv (\pi \alpha Z_a Z_b)^2 m_a m_b c^2 / (m_a + m_b)$

Measured values of cross section for selection of reactions of interest

Cross Section Enhancement

Electrostatic Screening

Cross Section Enhancement

Electrostatic Screening

Channeling and Anti-channeling

• Figure by Bagli et al [1]

Electrostatic Screening

Channeling and Anti-channeling

Equation

$$\sigma_{enh} = \frac{S(E)}{\sqrt{E(E+U_e)}} \exp\left(-\sqrt{\frac{E_G}{E+U_e}}\right)$$

Where U_e is enhancement energy

$$F = \frac{\sigma_{enh}}{\sigma_{bare}} \tag{3}$$

(2)

Energy Enhancement Nomograph

Determining Cross Section

Thick Target Yield

$$Y_{\infty} = \frac{n_p N_A \omega_X \Delta \Omega}{4\pi M} \int_{E_l}^0 \sigma(E) \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)^{-1} \left(\frac{\mathrm{d}\Omega}{\mathrm{d}\Omega'}\right)^{-1} \mathrm{d}E \tag{6}$$

Differential Yield

$$\frac{\mathrm{d}Y_{\infty}}{\mathrm{d}E} = \frac{n_p N_A \omega_x \Delta \Omega}{4\pi M} \sigma(E) \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)^{-1} \left(\frac{\mathrm{d}\Omega}{\mathrm{d}\Omega'}\right)^{-1} \tag{7}$$

Cross Section from Yield

$$\sigma(E) = \frac{4\pi M}{n_p N_A \omega_x \Delta \Omega} \frac{\mathrm{d}Y_\infty}{\mathrm{d}E} \frac{\mathrm{d}E}{\mathrm{d}x} \frac{\mathrm{d}\Omega}{\mathrm{d}\Omega'} \tag{8}$$

Beam	Target	Measured U_e (eV)	Ref.
⁷ Li	Kapton	<600	[2]
	¹ H-Pd _{2.34}	<300	
	Graphite (¹ HC _{16.9})	10 003(400)	[3]
	¹ HPd _{4.76}	3 600(700)	
	ТіН	3 900(400)	
	¹ HW _{23.8}	5900(900)	
¹ H	⁷ LiPd ₉₉	3790(330)	[4]
	⁷ Li ₂ WO ₄	185(150)	
	⁷ Li	1280(60)	

Initial Results

Material	Chem.	No.	Angle Range
	Form.	Samples	(°)
Lithium Tungstate	Li ₂ WO ₄	4	0
Lithium Manganate	LiMn ₂ O ₄	4	
Lithium Titanate	Li ₄ Ti ₅ O ₁₂	4	
Lithium Iron Phosphate	LiFePO ₄	4	
Lithium Flouride	LiF	1	-0.5 - 1
Lithium Niobate	LiNbO ₃	2	

- Powdered samples pressed
- Aluminum cup for support
- \cdot 15 min under 10⁴ kg
- Processed and shipped under atmosphere
- measurements contracted out to Western University

Western Beamline Configuration

Energy keV	Dose µC		Fixed	Moveable
80	100	Area mm ²	50	450
100	100	Solid Angle sr	0.037	0.380
200	20	Dist. to Targ.	6.9	6.9
500	5	ст		
1000	1	Angle. °	10	70

Measured Results: Raw Yield

Measured Results: Integrated Yield

Measured Results: Amorphous

Measured Results: With Crystalline Targets

Measured Results: With Crystalline Targets

- Beam current nA— long runs
- High cost limited runtime

- low counts at low energies
- need more energy steps

Next Steps

Transitioning to in-house beamline

- higher current 1mA
- will conduct more measurements in smaller energy steps

Acknowledgements— Funding

S mitacs

SOLEINIUM

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Thank You— Questions?

Backmatter

References i

- E. Bagli, D. De Salvador, L. Bacci, et al., "Enhancement of the Inelastic Nuclear Interaction Rate in Crystals via Antichanneling," *Phys. Rev. Lett.*, vol. 123, no. 4, p. 044 801, Jul. 2019, ISSN: 1079-7114. DOI: 10.1103/PhysRevLett.123.044801.
- [2] M. Lipoglavšek, I. Čadež, S. Markelj, P. Pelicon, and P. Vavpetič, "Electron screening in the 1H(7Li,α)4He reaction," European Physical Journal A, vol. 44, no. 1, pp. 71–75, Apr. 2010, ISSN: 1434-601X. DOI: 10.1140/epja/i2010-10937-7.
- [3] A. Cvetinovic, M. Lipoglavsek, S. Markelj, and J. Vesic, "Molecular screening in nuclear reactions," *Physical Review C*, vol. 92, no. 6, p. 065 801, Dec. 2015, ISSN: 2469-9993. DOI: 10.1103/PhysRevC.92.065801.

References ii

 [4] J. Cruz, Z. Fülöp, G. Gyürky, et al., "Electron screening in 7Li(p,α)α and 6Li(p,α)3He for different environments," *Physics Letters B*, vol. 624, no. 3, pp. 181–185, Sep. 2005, ISSN: 0370-2693. DOI: 10.1016/j.physletb.2005.08.036.

Extras

Re	eactar	nts	Energy and Pathways	Products
¹ H	+	⁷ Li	17.2 MeV	2 ⁴ He + 8.6 MeV
¹ H	+	¹¹ B	8.68 MeV	3 ⁴ He 2.9 MeV
² H	+	² H	4.03 MeV	³ H ¹ H 1.01 MeV 3.02 MeV
	+		50 %	³ He + n ⁰ 0.82 MeV 2.45 MeV