

Suppression Without Shaping: DisCo Neural Network Optimization for $H \rightarrow \mu\mu$ Decay Analysis

Sam Moir

WNPPC - 2025

Department of Physics

LHC and ATLAS

- Collide protons
- Produce Higgs boson
- •Measure output:
 - Momentum
 - Energy ٠
 - Charge

Departmen

Reconstructing a Higgs Boson Decay

- Reconstruct mass from particles' energy & momentum
- Sharp peak around Higgs mass (125 GeV) indicates Higgs decay

Department

Reconstructing a $H \rightarrow \mu\mu$ decay

- Reconstruct mass from muons' energy & momentum
- •Sharp $m_{\mu\mu}$ peak around Higgs mass (125 GeV) indicates Higgs decay

Higgs boson rest frame

LAB frame Higgs boson mas momentum

Comparing data and simulations

- •Signal:
 - $H \rightarrow \mu \mu$
- •Background processes:
 - $Z \rightarrow \mu \mu$
 - $t\bar{t} \rightarrow \mu\mu j j \nu \nu$
 - ...
 - $ZZ \rightarrow \mu \mu \ell \ell$
 - $tt \rightarrow \mu \mu j j j j \nu \nu$
 - $WZqq \rightarrow \mu \mu \ell \nu j j$

Using ML to extract $H \rightarrow \mu\mu$ signal

- Boosted Decision Trees (BDTs)
 - Achieved 2.0σ measurement
 - Next goal is 3.0σ
- •Deep Neural Nets (DNNs)
 - Major issue: background shaping

Background shaping

Pre-NN

Background shaping

Post-NN: NN selects background in signal region

Why is background shaping bad?

Want to subtract background

Need to know background from sidebands

Departmen

Why is background shaping bad?

Want to subtract background

Need to know background from sidebands

Departmen

of Physics

Why is background shaping bad?

Want to subtract background

Need to know background from sidebands

Department

of Physics

Pre-NN

Department

Unshaped background

Background

Post-NN: NN selects background evenly

Events 4

Signal

Invariant mass \rightarrow

Combined

arleton

Universitv

Post-NN: NN selects background evenly

Invariant mass \rightarrow

Department

of Physics

Events \rightarrow

Using ML to extract $H \rightarrow \mu\mu$ signal

- Previous Analyses
 - BDTs
 - DNNs
- •New Analysis: DisCo Neural Net (DisCo NN)
 - Adds a distance-correlation term to DNN loss function
 - Punishes shaping in the background

DisCo NN

Loss function

- $L(\vec{y}_{\text{pred}}, \vec{y}_{\text{true}}) = L_{\text{BCE}}(\vec{y}_{\text{pred}}, \vec{y}_{\text{true}}) + \alpha \cdot d\text{Corr}^2_{\vec{y}_{\text{true}}=0}(\vec{m}_{\mu\mu}, \vec{y}_{\text{pred}})$
 - *L*_{BCE}: Standard DNN training term
 - α : DisCo parameter controlling loss due to background shaping
 - dCorr²: Distance Correlation function

 $\alpha = 0.0$ Background Distributions Cat 1 (0%-10%) 0.07 Cat 4 (30%-40%) Cat 7 (60%-70%) 0.06 at 10 (90%-100%) ATLAS Work In Progress 0.05 vents 0.04 0.03 0.02 0.01 0.00 110 120 130 140 150 160 muu [GeV]

 $\alpha = 30.0$

Department

of Physics

Preliminary Results

Conclusion + Next Steps

- • $H \rightarrow \mu\mu$ analysis > next big step in Higgs physics
 - Difficult due to quantity of $\mu\mu$ production in LHC
- •ML analyses unsatisfactory (so far)
 - BDTs don't learn as well as DNNs, DNNs produce shaping
- •New direction for ML analysis: DisCo
 - Punishes shaping
 - Preliminary results competitive with BDT
- •Future steps
 - Continue to optimize meta-architecture (exact value of α , NN hyperparameters, etc.)
 - Train on more parameters (option not available to BDT)

Acknowledgements

Acknowledgements: Bryce Norman, Ian Ramirez-Berend, Dag Gillberg, Manuella Vincter, Thomas Koffas (Supervisor)

Department of Physics