

In Situ Combination of Jet Uncertainties and the Production of Jet Calibrations for the ATLAS Detector

Jérémie LePage-Bourbonnais

Feb. 15th, 2025

WNPPC 2025

FATLAS The Large Hadron Collider

- Located at CERN and in both Switzerland and France
- + 27 km loop, ~100 meters below the ground
- Accelerates and collides bunches of protons and heavy ions at high center of mass energies (\sqrt{s})
- Home to detectors like ALICE, CMS, LHCb, and $\ensuremath{\mathbf{ATLAS}}$

- ATLAS is a multi-purpose detector
- Layered detector design
 - Inner tracking detectors for charged particles
 - Calorimeters to measure particle energy
 - Muon spectrometer provides secondary measurements of muon momentum
- 'Onion'-like hermetic design maximises coverage around the collision point

Detector Cross-Sections

Jets and the ATLAS Detector

- High energy collisions produce sprays of particles
- Most ATLAS analyses group these particles and the associated detector responses into useful objects called jets

Hadronization hadrons $\pi^{\pm} K^{\pm} \dots$

The Fractal Lives of Jets | Eric M. Metodiev, Modified

Detection

• Jets are by far the most common product of collisions

Fragmentation partons @ 12 d ...

- A lot of work goes into constructing and calibrating jets in ATLAS
- The measured energy can differ from the original 'true' energy
 - Difference in calorimeter responses
 - 'Blind' detector regions

Jet Reconstruction

- The anti-kt algorithm is used to build jets from the detector measurements
- The radius (\mathbf{R}) characterizes the reconstructed jet size
 - Small-R ($\mathbf{R} = 0.4$) Good for 'standard' jets
 - Large-R (R = 1.0) Good for jets from high momentum W, Z, top, etc. ₂
- Corrections are applied to the jets to account for noise from other secondary collisions (pileup)
 - As you can see below, events can be quite noisy!

ATLAS Event Display

Jet Calibrations

- Biases in the detector response are accounted for by calibrations to the jet energy and direction
 - Important near boundaries between detector components
 - Also account for jet properties such as flavour, topology, and the simulator used
- The final step is to correct data to match simulations using in situ measurements of the Jet Energy Scale (JES)
 - This corrects the jet energy to the particle level scale
 - In Situ: calibrations are derived from jet measurements within the detector
 - Uses same datasets as analyses

- Multiple statistically independent measurements are used to evaluate the JES across a range of pT values
 - Momentum balance between reference and probe jets
 - Measurements from complimentary detectors
- The combination in this presentation uses the following measurements:
 - Photon + Jet
 - Z \rightarrow ee + Jet
 - Z $\rightarrow \mu\mu + \text{Jet}$
 - Single Particle Response (E/p)
- Data/Simulation ratio of jet response $R = \left< \frac{p_t^{jet}}{p_t^{ref}} \right>$ used to evaluate the JES for each method

• The JES calibration is a weighted average combining all the measurements

- The weights are determined by a χ^2 minimization
 - Accounts for correlations in uncertainties within measurements
 - Measurements with smaller uncertainties have larger weights
- Additional uncertainty scaling is applied where measurements have less agreement
- Combining measurements reduces the overall uncertainty
- First time combining single particle response (E/P) with jet momentum balance!

Combined JES Calibration

9

In Situ Uncertainties

- The full JES calibration uncertainties come from statistical and systematic sources
 - These include jet particle flavour, biases from using select event topologies for the calibration, etc.
- Uncertainties are collected and defined in configurations which ATLAS analyses can use to easily apply uncertainties correctly
 - Contain information on correlations, parametrization, etc.
- Like for the JES, there are sets of uncertainties for the Jet Energy Resolution (JER), Jet Mass Scale (JMS) calibration, and Jet Mass Resolution (JMS)

Final JES Uncertainties

- Shifts from the individual uncertainties are applied to jets
 - Modify their energy and mass

- Analyses are designed to account for the impact of these uncertainties on their results
- Much smaller (world-leading) total uncertainty compared to the previous JES!

• Jets are by far the most common object in ATLAS collisions

- Precise measurements of jet characteristics are very important for most analyses
- The JES calibration is crucial to accurately analyse jets in the ATLAS datasets
 - The calibration uncertainties account for the majority of the jet uncertainty and so achieving a precise measurement is a challenging but important effort
 - Currently we can achieve sub 1% uncertainties for most jets!
- Thanks for your attention!
- Many thank for the help from the ATLAS JetEtMiss and In Situ group as well as the Carleton ATLAS group

Backup Slides

Jet Construction in ATLAS

- Many steps go into producing jet objects used by analyses:
 - A jet finding algorithm is used to produce initial objects
 - Numerous corrections and calibrations are used to refine the initial jet object
 - Finally the in situ calibration corrects for differences between data and Monte Carlo simulations
- The Jet Energy Scale (JES) in situ calibration corrects the reconstructed jet energy to match simulation
 - Derived from the differences between data and simulation using well understood reference objects
 - + A similar calibration also exist for the Jet Mass Scale (JMS)

- Photon + Jet
- $Z \rightarrow ee + Jet$
- $Z \rightarrow \mu\mu + Jet$

ATLAS

 \simeq 0.95 \sim 13 TeV, 80 fb⁻¹

Z+jet, $Z \rightarrow \mu \mu$

 $|\eta^{\rm jet}| < 0.8$

0.90 Anti-k, R = 0.4 (PFlow+JES)

Data

Powheg+Pythia8

15

Sherpa 2.2.1

FATLAS JES Statistical Combination

- A fine binning is used for the combination
- For each bin the JES response is determined from a weighted average from each method's interpolated result

- A χ^2 minimization is used to weigh the inputs for each bin in pT
 - Weights are proportional to the inverse of the square uncertainties
 - Uncertainties are rescaled by the tension $\left(\sqrt{\chi^2/dof}\right)$ if it is larger than 1