

Investigating Energy Mixing Dynamics of Magnetically Trapped Antihydrogen

Abbygale Swadling PhD student, University Of Calgary Supervisor: Dr. Timothy Friesen

February 16th WNPPC 2025

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

Overview

- 1) Introduction to ALPHA and energy mixing
- 2) Why study energy mixing?
- 3) Experimental methods for energy mixing studies
- 4) Results
- 5) Conclusion and next steps

Positron Source

ALPHA-g

- ALPHA utilizes the ELENA (Extra Low ENergy Antiproton) ring at CERN
- ALPHA investigates the baryon asymmetry problem
- ALPHA produces and traps antihydrogen ($\overline{\mathbf{H}}$) for experimental use

Magnetic Trapping of Antihydrogen

- The dipole moment ($\vec{\mu}$) interacts with the magnetic field (B)
 - $\mathbf{U} = -\overrightarrow{\mu} \cdot \overrightarrow{\mathbf{B}}$
- If $\vec{\mu}$ is anti-aligned with \vec{B} an atom will be "low-field seeking" and can be trapped

H Energy Components

- $\overline{\mathbf{H}}$ atoms have axial (E_{||}) and transverse energy (E_⊥)
 - $E_{total} = E_{\parallel} + E_{\perp}$

atom with only transverse energy
 atom with only axial energy

H Energy Mixing

- Energy mixing is when E_{\parallel} and E_{\perp} are exchanged over an atom's trapped lifetime
- Energy mixing is caused by azimuthal field asymmetries
 - Radial components of solenoid fields add to the radial field of the octupole
 - Octupole end turns
- Simulations predict that some atoms will not mix energies
 - This has never been experimentally verified

Why investigate energy mixing?

- Studies can help ALPHA reach higher experimental precision
- Understanding the timescale is important for ALPHA experiments
 - Laser cooling of antihydrogen
 - Laser and microwave spectroscopy
 - Measuring the effects of gravity on antimatter
- Experimental studies are critical for simulations
 - All results in ALPHA require simulations to compare matter to antimatter

UNIVERSITY OF

Simulated **H** Energy Mixing

- Simulations predict the existence of two categories of atoms those that will mix energies and those that will not
- If atoms start with low axial energy they tend not to mix
- 1/3 of atoms are no-mix
 - Initial $oldsymbol{arepsilon}_{\parallel} < 0.1$
- 2/3 of atoms mix
 - Initial $m{arepsilon}_{\parallel} > 0.1$

Image Credit: Dr. Danielle Hodgkinson, adapted from Zhong, A., Fajans, J., Zukor, A. F. Axial to transverse energy mixing dynamics in octupole-based magnetostatic antihydrogen traps. *New J. Phys.* **79**, 053003, (2018).

- **H** is confined axially by short solenoids and radially by octupole magnet
- Axial trap depth is set by magnetic field of short solenoids

Octupole

ALPHA-2 Trap

Short Solenoids

- Decrease B field at short solenoids, this decreases the axial trap depth
- Immediately $\overline{\mathbf{H}}$ with E_{\parallel} > trap depth are lost
 - These are mostly mix atoms
- Hold atoms in this field
- Remaining $\overline{\mathbf{H}}$ with $E_{\parallel} + E_{\perp} > trap$ depth may escape if they mix energies
 - Atoms need to gain E_{\parallel} from their E_{\perp} component to overcome the axial trap depth

- After waiting two types of atom should remain trapped
 - 1) No mix atoms with E_{\parallel} < trap depth
 - 2) Atoms with $E_{\parallel} + E_{\perp} < trap depth$

- Inject microwaves at positron spin resonance for atoms sampling the B field just above the axial trap depth
- $\overline{\mathbf{H}}$ with E_{\perp} > trap depth will be ejected
 - These atoms must be no-mix

- Inject microwaves at positron spin resonance for atoms sampling the B field just above the axial trap depth
- $\overline{\mathbf{H}}$ with E_{\perp} > trap depth will be ejected
 - These atoms must be no-mix

- There should only be one type of atom remaining
 - Atoms with $E_{\parallel} + E_{\perp} < trap depth$ (cold atoms, less than 86 mK)
- Remove radial confinement by ramp down octupole magnet
 - All trapped atoms remaining will be lost

Step 1 to 2

Experimental Results: HEnergy Mixing Evidence

2.4 Ê

2.2 2.0

1.8 1.6

1.4

1.2

1.0

Magnetic Field, B

3

Step 2 to 3

Experimental Results: No Mix H Evidence

Summary of Results

Stage	Losses*
Decrease short solenoids ⁺	68.5%
Hold for atoms to mix energies	12.6%
Microwave background	1.9%
Microwave ejection of no-mix atoms	7.6%
Count cold atoms	8.9%

*Losses are represented as percentages of total population and are shown only in relevant experimental steps
+ Not shown in plot

H Atoms Lost During Experiment

Conclusion and Next Steps

• No-mix $\overline{\mathbf{H}}$ atoms have been observed for the first time

- Analysis of the experiment is currently in progress
- Results will be used for future experiment design, analysis, and simulation in ALPHA
 - Improved cooling of antihydrogen
 - Higher precision gravity measurements on antimatter
 - Higher precision laser and microwave spectroscopy

Acknowledgements

- This experiment was proposed by Prof. Joel Fajans (UC Berkeley), Prof. Jonathan Wurtele (UC Berkeley), and Prof. Mike Hayden (Simon Fraser University).
- This experiment was designed and simulated by Dr. Danielle Hodgkinson (UC Berkeley).

UC Berkeley

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

Extra slides

Ground State Hyperfine Transitions

- Trapped \overline{H} will be in $|1S_d\rangle$
- Microwave radiation can induce transitions from $|1S_d\rangle \rightarrow |1S_a\rangle$
- If H
 If H
 Iransitions to |1S_a> it will escape and annihilate on surrounding apparatus walls

The ALPHA experiment

Image Credit: Ahmadi, M., Alves, B.X.R., Baker, C.J. *et al.* Characterization of the 1S–2S transition in antihydrogen. *Nature* **557**, 71–75 (2018).

Solenoid Octupole HIII Octupole Solenoid HIII Octupole

Key Steps of Experiment

Results Comparison

Stage	Losses*	Preliminary Simulated Losses ^{*†}
Decrease short solenoids	68.5%	76.2%
Hold for atoms to mix energies	12.6%	15.4%
Microwave background	1.9%	
Microwave ejection of no-mix atoms	7.6%	7.3%
Count cold atoms	8.9%	0.1%

*Losses are represented as percentages of total population and are shown only in relevant experimental steps

Electron Cyclotron Resonance (ECR)

Axial Trap Depth During Energy Mixing Hold

- The magnetic field was measured using Electron Cyclotron Resonance (ECR) techniques
- One of the short solenoid fields was slowly increased over time
 - This caused the axial trap depth to increase during the energy mixing hold
 - Trap depth = (maximum field at the short solenoid) – (magnetic minimum)

Axial Magnetic Field During Energy Mixing Hold

 Axial magnetic field was always 1.052 Magnetic Field (T) higher at the downstream solenoid 1.050 It was necessary to increase the field • only at the upstream solenoid to

maintain an increasing trap depth

