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Overview

1) Introduction to ALPHA and energy mixing

2) Why study energy mixing?

3) Experimental methods for energy mixing studies

4) Results 

5) Conclusion and next steps 
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• ALPHA utilizes the ELENA (Extra Low ENergy 
Antiproton) ring at CERN

• ALPHA investigates the baryon asymmetry problem

• ALPHA produces and traps antihydrogen (!𝐇) for 
experimental use 



Magnetic Trapping of Antihydrogen

• The dipole moment (𝛍	) interacts 
with the magnetic field (𝐁)
• 𝐔 = −𝛍 ' 𝐁

• If 𝛍 is anti-aligned with 𝐁 an atom 
will be “low-field seeking” and can 
be trapped 
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!𝐇 !𝐇

!𝐇 Energy Components

• $𝐇 atoms have axial (E∥) and 
transverse energy (E$)
• E#$#%& = E∥ + E(
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atom with only transverse energy
atom with only axial energy



!𝐇 Energy Mixing
• Energy mixing is when E∥ and E"are exchanged over an atom’s trapped lifetime
• Energy mixing is caused by azimuthal field asymmetries

• Radial components of solenoid fields add to the radial field of the octupole 
• Octupole end turns 

• Simulations predict that some atoms will not mix energies
• This has never been experimentally verified 
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Why investigate energy mixing? 

• Studies can help ALPHA reach higher experimental 
precision
• Understanding the timescale is important for ALPHA 

experiments 
• Laser cooling of antihydrogen 
• Laser and microwave spectroscopy
• Measuring the effects of gravity on antimatter 

• Experimental studies are critical for simulations
• All results in ALPHA require simulations to compare 

matter to antimatter
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• Simulations predict the existence of 
two categories of atoms those that will 
mix energies and those that will not 

• If atoms start with low axial energy 
they tend not to mix  

• 1/3 of atoms are no-mix 

• Initial 𝜺∥ < 0.1

• 2/3 of atoms mix

• Initial 𝜺∥ > 0.1

Simulated !𝐇 Energy Mixing

𝜺∥ =
𝑬∥

𝑬∥ + 𝑬(
Image Credit: Dr. Danielle Hodgkinson, adapted from Zhong, A., Fajans, J., 
Zukor, A. F. Axial to transverse energy mixing dynamics in octupole-based 
magnetostatic antihydrogen traps. New J. Phys. 79, 053003, (2018).

Time-averaged Normalized Axial Energy 
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Experimental Procedure: Step 1

• $𝐇 is confined axially by short solenoids 
and radially by octupole magnet
• Axial trap depth is set by magnetic field 

of short solenoids
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Experimental Procedure: Step 2
• Decrease 𝐁	field at short solenoids, 

this decreases the axial trap depth

• Immediately $𝐇 with E∥ > trap depth 
are lost 
• These are mostly mix atoms 

• Hold atoms in this field 

• Remaining $𝐇 with E∥ + E" > trap 
depth may escape if they mix energies
• Atoms need to gain E∥ from their 
E"component to overcome the axial trap 
depth

Energy Mixing Hold 
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Experimental Procedure: Step 2

• After waiting two types of atom 
should remain trapped 

1) No mix atoms with E∥ < trap depth

2) Atoms with E∥ + E( < trap depth 
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Energy Mixing Hold 



Experimental Procedure: Step 3

• Inject microwaves at positron spin 
resonance for atoms sampling the 
𝐁	field just above the axial trap 
depth
• $𝐇 with E$ > trap depth will be 

ejected
• These atoms must be no-mix

microwaves

Microwave Ejection
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Experimental Procedure: Step 3
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• Inject microwaves at positron spin 
resonance for atoms sampling the 
𝐁	field just above the axial trap 
depth
• $𝐇 with E$ > trap depth will be 

ejected
• These atoms must be no-mix



Experimental Procedure: Step 4

• There should only be one type of 
atom remaining 
• Atoms with E∥ + E( < trap depth 

(cold atoms, less than 86 mK)

• Remove radial confinement by 
ramp down octupole magnet
• All trapped atoms remaining will be 

lost 
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Step 1 to 2

Standard Trap

1 Energy Mixing Hold 
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At first !𝐇 with E∥ > trap 
depth will escape 



Energy Mixing Hold 
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Experimental Results: !𝐇 Energy Mixing Evidence
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Over time !𝐇 will escape magnetic 
trap by exchanging E"with E∥



Energy Mixing Hold 

2 Microwave Ejection

3

Step 2 to 3
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Experimental Results: No Mix !𝐇 Evidence
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!𝐇 that samples 𝐁 field just above the 
axial trap depth will transition to an 
untrappable state via microwave 
induced positron spin flip



Summary of Results 

(a) (c) (d) (e)

Stage Losses*

Decrease short solenoids† 68.5%

Hold for atoms to mix energies 12.6%

Microwave background 1.9%

Microwave ejection of no-mix 
atoms 7.6%

Count cold atoms 8.9%

(b)
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*Losses are represented as percentages of total population 
  and are shown only in relevant experimental steps
† Not shown in plot 



Conclusion and Next Steps

• No-mix $𝐇 atoms have been observed for the first time 

• Analysis of the experiment is currently in progress
• Results will be used for future experiment design, analysis, and 

simulation in ALPHA 
• Improved cooling of antihydrogen 
• Higher precision gravity measurements on antimatter 
• Higher precision laser and microwave spectroscopy 
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Extra slides



Ground State Hyperfine Transitions

• Trapped $H will be in |1Sd⟩
• Microwave radiation can induce 

transitions from |1Sd⟩ -> |1Sa⟩ 
• If $H transitions to |1Sa⟩ it will 

escape and annihilate on 
surrounding apparatus walls
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The ALPHA experiment

Image Credit: Ahmadi, M., Alves, B.X.R., Baker, C.J. et al. Characterization of the 1S–2S transition in antihydrogen. 
Nature 557, 71–75 (2018).
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ALPHA-2 Magnets 
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Key Steps of Experiment

Standard Trap

Energy Mixing Hold 

Microwave Ejection

1

3

Over time !𝐇 will escape magnetic 
trap by exchanging E"with E∥

!𝐇 that samples the 𝐁 field just above 
the axial trap depth will transition to 
an untrappable state via microwave 
induced positron spin flip

At first !𝐇 with 
E∥ > trap depth  
will escape 

2
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Results Comparison  
(a)

(b) (d) (e) (f)(c)
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*Losses are represented as percentages of total population 
  and are shown only in relevant experimental steps

Stage Losses*
Preliminary 
Simulated 
Losses*†

Decrease short solenoids 68.5% 76.2%

Hold for atoms to mix energies 12.6% 15.4%

Microwave background 1.9% --

Microwave ejection of no-mix 
atoms 7.6% 7.3%

Count cold atoms 8.9% 0.1%



Electron Cyclotron Resonance (ECR)

#𝒛

Magnetron motion

Electron motion
Axial motion

• 𝐁 = 𝐦𝝎𝒄
𝒒

• m	= electron mass 
• q	= electron charge
• 𝜔% = angular frequency of cyclotron motion
• B = magnetic field 

28



Axial Trap Depth During Energy Mixing Hold

• The magnetic field was measured 
using Electron Cyclotron Resonance 
(ECR) techniques 

• One of the short solenoid fields was 
slowly increased over time 
• This caused the axial trap depth to 

increase during the energy mixing hold
• Trap depth = (maximum field at the 

short solenoid) – (magnetic minimum)
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Axial Magnetic Field During Energy Mixing Hold

• Axial magnetic field was always 
higher at the downstream solenoid 

• It was necessary to increase the field 
only at the upstream solenoid to 
maintain an increasing trap depth

30


