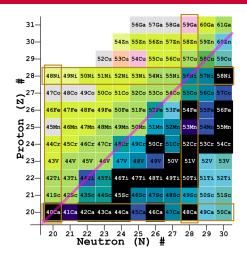
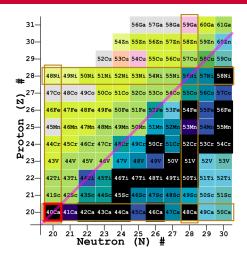
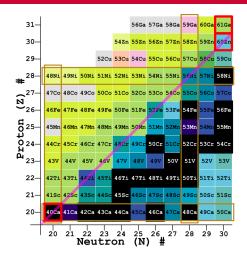
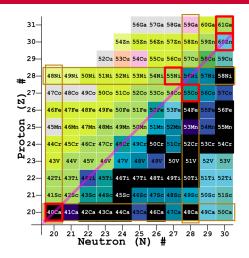

Mirror symmetry in the $f_{7/2}$ shell below ⁵⁶Ni: excited states and electromagnetic transition rates in ⁵⁵Ni and ⁵⁵Co



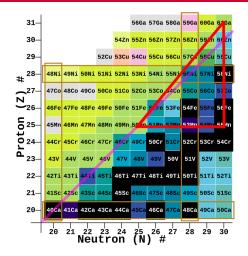

Heinz Asch


Department of Physics Simon Fraser University

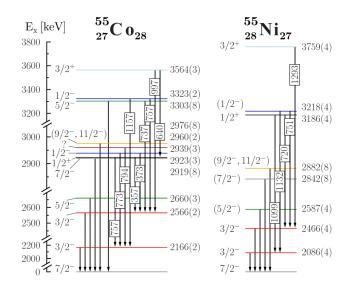
On behalf of the TIP, EMMA, & TIGRESS Collaborations



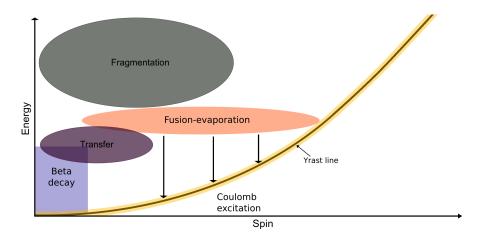



Energy, spins, and parities of excited states,

- Energy, spins, and parities of excited states,
- Angular correlations/polarization of γ-rays,

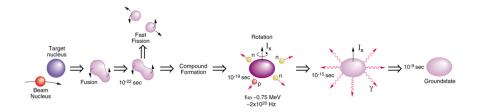


- Energy, spins, and parities of excited states,
- Angular correlations/polarization of γ-rays,
- Data for Shell Model of f_{7/2} neutron hole states near ⁵⁶Ni.

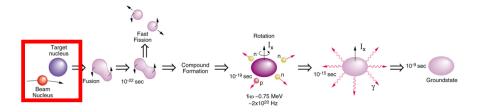


- Energy, spins, and parities of excited states,
- Angular correlations/polarization of γ-rays,
- Data for Shell Model of f_{7/2} neutron hole states near ⁵⁶Ni.

Mirror Energy Differences via Knockout



M. Spieker et al., Physical Review C, 2019

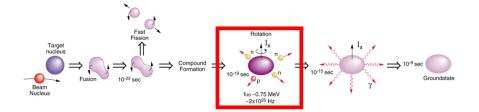


SFU



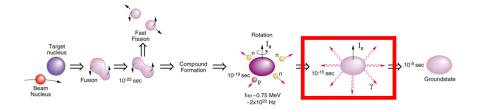
▶ ²⁰Ne + ⁴⁰Ca

▶ ²¹Na + ⁴⁰Ca



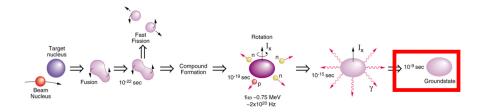
$$\blacktriangleright$$
 ²⁰Ne + ⁴⁰Ca \rightarrow ⁶⁰Zn

 \blacktriangleright ²¹Na + ⁴⁰Ca \rightarrow ⁶¹Ga



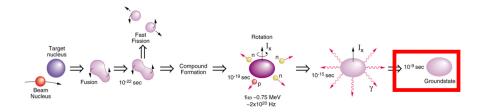
$$\blacktriangleright$$
 ²⁰Ne + ⁴⁰Ca \rightarrow ⁶⁰Zn \rightarrow ⁵⁵Co^{*} + α p

 \blacktriangleright ²¹Na + ⁴⁰Ca \rightarrow ⁶¹Ga \rightarrow ⁵⁵Ni^{*} + α pn



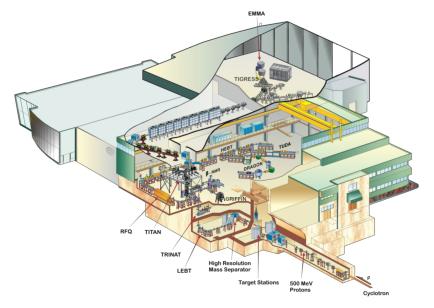
► ²⁰Ne + ⁴⁰Ca
$$\rightarrow$$
 ⁶⁰Zn \rightarrow ⁵⁵Co^{*} + $\alpha p \rightarrow$ ⁵⁵Co + αp + n γ

 \blacktriangleright ²¹Na + ⁴⁰Ca \rightarrow ⁶¹Ga \rightarrow ⁵⁵Ni^{*} + α pn \rightarrow ⁵⁵Ni + α pn + n γ

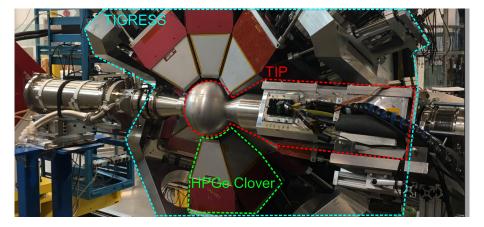


► ²⁰Ne + ⁴⁰Ca
$$\rightarrow$$
 ⁶⁰Zn \rightarrow ⁵⁵Co^{*} + $\alpha p \rightarrow$ ⁵⁵Co + αp + n γ + ...

► ²¹Na + ⁴⁰Ca \rightarrow ⁶¹Ga \rightarrow ⁵⁵Ni^{*} + α pn \rightarrow ⁵⁵Ni + α pn + n γ + ...

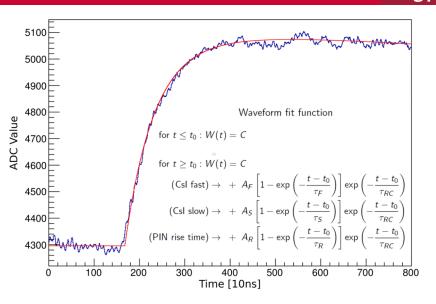

► ²⁰Ne + ⁴⁰Ca
$$\rightarrow$$
 ⁶⁰Zn \rightarrow ⁵⁵Co^{*} + $\alpha p \rightarrow$ ⁵⁵Co + αp + n γ + ...

▶ ²¹Na + ⁴⁰Ca → ⁶¹Ga → ⁵⁵Ni^{*} + α pn → ⁵⁵Ni + α pn + n γ + ...

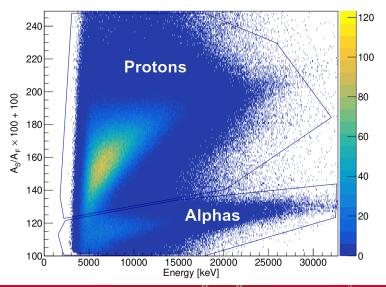

These are just two among dozens of other products.

Isotope Separator and ACelerator

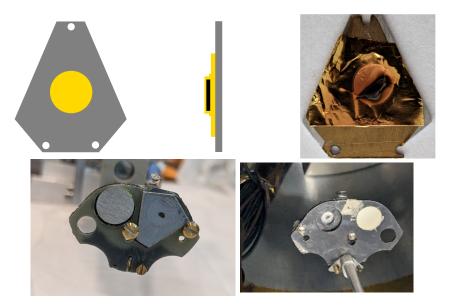
TRIUMF-ISAC Gamma-Ray Escape Supp. Spec.



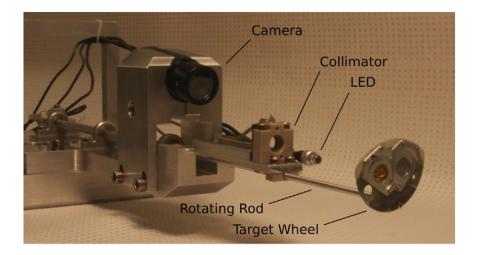
TIGRESS Integrated Plunger



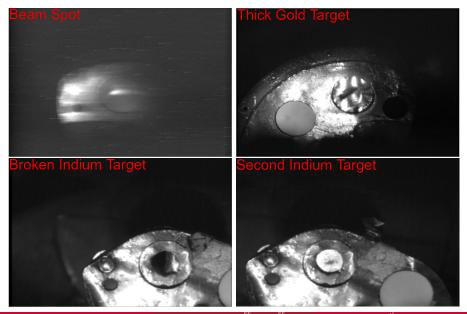
Charged Particle Waveform Fitting



J. Williams, PhD Thesis, 2019



Calcium Targets

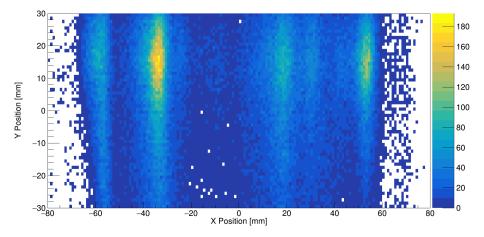


TIP Camera

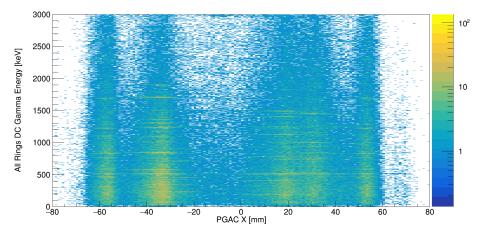
February 13th, 2025 14 / 22

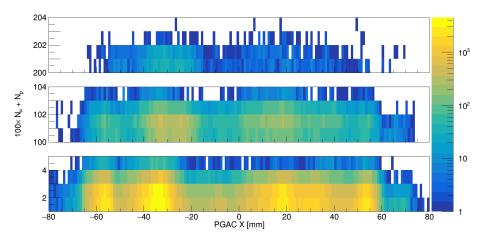
ElectroMagnetic Mass Analyzer

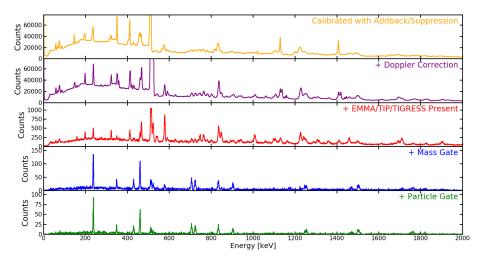
EMMA as a "Prism"


SFU

she Unsplashe Unsplashe Unsplashe Unsplashe Unsplashe Unsplashe Unsplashe Unsplashe Unsplashe Unsplashe


Unsplash+ Unsplash+ Unsplash+ Unsplash+ Unsplash+ Unsplash+ Unsplash+ Unsplash+ Unsplash+


16 / 22



SFU

20 / 22

Experiments were successfully conducted to pursue the production of ⁵⁵Co and ⁵⁵Ni.

21/22

SEU

- Experiments were successfully conducted to pursue the production of ⁵⁵Co and ⁵⁵Ni.
- Analysis is ongoing, and results are thus very preliminary.

- Experiments were successfully conducted to pursue the production of ⁵⁵Co and ⁵⁵Ni.
- Analysis is ongoing, and results are thus very preliminary.
 Found: ⁵⁷Co, ⁵⁶Co, ⁵⁵Co, ⁵⁴Fe, and ⁵¹Mn so far...

- Experiments were successfully conducted to pursue the production of ⁵⁵Co and ⁵⁵Ni.
- Analysis is ongoing, and results are thus very preliminary.
 Found: ⁵⁷Co, ⁵⁶Co, ⁵⁵Co, ⁵⁴Fe, and ⁵¹Mn so far...
- Mainly wish to highlight the capabilities of TRIUMF and SFU apparatus:

- Experiments were successfully conducted to pursue the production of ⁵⁵Co and ⁵⁵Ni.
- Analysis is ongoing, and results are thus very preliminary.
 Found: ⁵⁷Co, ⁵⁶Co, ⁵⁵Co, ⁵⁴Fe, and ⁵¹Mn so far...
- Mainly wish to highlight the capabilities of TRIUMF and SFU apparatus:
 - TIGRESS: for high-resolution γ-ray detection with Compton suppression and addback,

21 / 22

- Experiments were successfully conducted to pursue the production of ⁵⁵Co and ⁵⁵Ni.
- Analysis is ongoing, and results are thus very preliminary.
 Found: ⁵⁷Co, ⁵⁶Co, ⁵⁵Co, ⁵⁴Fe, and ⁵¹Mn so far...
- Mainly wish to highlight the capabilities of TRIUMF and SFU apparatus:
 - TIGRESS: for high-resolution γ-ray detection with Compton suppression and addback,
 - ▶ TIP: to enable charged particle spectra and PID gating,

- Experiments were successfully conducted to pursue the production of ⁵⁵Co and ⁵⁵Ni.
- Analysis is ongoing, and results are thus very preliminary.
 Found: ⁵⁷Co, ⁵⁶Co, ⁵⁵Co, ⁵⁴Fe, and ⁵¹Mn so far...
- Mainly wish to highlight the capabilities of TRIUMF and SFU apparatus:
 - TIGRESS: for high-resolution γ-ray detection with Compton suppression and addback,
 - ▶ TIP: to enable charged particle spectra and PID gating,
 - EMMA: for gating on recoil nucleus A, Z, and E,

- Experiments were successfully conducted to pursue the production of ⁵⁵Co and ⁵⁵Ni.
- Analysis is ongoing, and results are thus very preliminary.
 Found: ⁵⁷Co, ⁵⁶Co, ⁵⁵Co, ⁵⁴Fe, and ⁵¹Mn so far...
- Mainly wish to highlight the capabilities of TRIUMF and SFU apparatus:
 - TIGRESS: for high-resolution γ-ray detection with Compton suppression and addback,
 - ▶ TIP: to enable charged particle spectra and PID gating,
 - EMMA: for gating on recoil nucleus A, Z, and E,
 - ⁴⁰Ca Targetry: to access proton-rich exotic nuclei,

- Experiments were successfully conducted to pursue the production of ⁵⁵Co and ⁵⁵Ni.
- Analysis is ongoing, and results are thus very preliminary.
 Found: ⁵⁷Co, ⁵⁶Co, ⁵⁵Co, ⁵⁴Fe, and ⁵¹Mn so far...
- Mainly wish to highlight the capabilities of TRIUMF and SFU apparatus:
 - TIGRESS: for high-resolution γ-ray detection with Compton suppression and addback,
 - ▶ TIP: to enable charged particle spectra and PID gating,
 - EMMA: for gating on recoil nucleus A, Z, and E,
 - ⁴⁰Ca Targetry: to access proton-rich exotic nuclei,
 - ... a combination that has not occurred before these experiments.

▶ Thank you to my mentors, collaborators, and colleagues:

C. Andreoiu¹, C. Angus², D. Annen³, M.D.H.K.G. Badanage¹, G. Ball², S. Buck⁴, R.J. Coleman⁴, B. Davids², J.S. Dodge⁵, P.E. Garrett⁴, E. Geerlof², S. Georges², B. Greaves⁴, G. Hackman², J.D. Holt², K. Hudson⁵, V. Karayonchev⁶, E. Kasanda⁴, P. Machule², M.S. Martin⁵⁶, A. Melson⁷, J.R. Murias², C.R. Natzke², K. Ortner¹, K. Preocanin⁵, A. Redey⁸, D. Rhodes², L. Schmidt⁴, P. Spagnoletti¹, K. Starosta¹, C.E. Svensson⁴, D. Tam⁵, N. Tanzi⁵, V. Vedia², L. Wagner², K. van Wieren⁷, J. Williams², F.T. Wu¹, D. Yates², Z. Yu¹

¹Department of Chemistry, SFU; ²TRIUMF; ³Department of Biomedical Physiology and Kinesiology, SFU; ⁴Department of Physics, University of Guelph; ⁵Department of Physics, SFU; ⁶Argonne National Laboratory; ⁷Science Technical Centre, SFU; ⁸School of Engineering Science, SFU

SIMON FRASER UNIVERSITY

