Locked in a Dark and Dusty Basement:

Field Emission and Particulate Contamination in the TRIUMF e-Linac

Aveen Mahon (she/her) Department of Physics and Astronomy, UVic Accelerator Division, TRIUMF

February 14th, 2025 WNPPC 2025, Banff

accelerat

TRIUMF is located on the traditional, ancestral, and unceded territory of the Musqueam people. https://native-land.ca/

Outline:

- Electron Linear Accelerator
- DarkLight
- Field Emission
- Particulate Collection and Analysis

% TRIUMF

TRIUMF: Canada's particle accelerator center

Accelerator Complex

Cyclotron

ISAC

e-Linac

Discovery, accelerated

WNPPC 2025, Banff

% TRIUMF

TRIUMF: Canada's particle accelerator center

Accelerator Complex

Cyclotron

ISAC

e-Linac!!

Discovery, accelerated

WNPPC 2025, Banff

Electron linear accelerator (e-Linac)

Electron linear accelerator (e-Linac)

Radio frequency acceleration (RF)

- Time varying electromagnetic (EM) fields
- · Cavity design resonates at frequency in sync with passage of particles

Radio frequency acceleration (RF)

- Time varying electromagnetic (EM) fields
- · Cavity design resonates at frequency in sync with passage of particles

% TRIUMF

Radio frequency acceleration (RF)

- Time varying electromagnetic (EM) fields
- · Cavity design resonates at frequency in sync with passage of particles

Discovery, accelerated

*** TRIUMF**

February 14th, 2025

accelerat

DarkLight Experiment

What is DarkLight?

- Scattering of e⁻ beam on tantalum target.
- Pair production of e⁻/e⁺ to search for mass resonance of new interaction boson.

Projected exclusion plot for 2-phases of DarkLight by L. Miller.

DarkLight Experiment

What is DarkLight?

- Scattering of e⁻ beam on tantalum target.
- Pair production of e⁻/e⁺ to search for mass resonance of new interaction boson.

Projected exclusion plot for 2-phases of DarkLight by L. Miller.

≈ TRIUMF

DarkLight Beamline

WNPPC 2025, Banff

Field Emission (FE) in SRF Cavities

 $\textbf{FE} \rightarrow$ emission of e^- from regions of high surface E field. Prevalent in SRF cavities due to high gradient.

Field Emission (FE) in SRF Cavities

 $\textbf{FE} \rightarrow$ emission of e^- from regions of high surface E field. Prevalent in SRF cavities due to high gradient.

Limits cavity performance:

Extra load on RF power

 → lower cavity gradient;
 → consequences for
 delivery to experiments.

[1]

Discovery, accelerated

Field Emission (FE) in SRF Cavities

 $\textbf{FE} \rightarrow \text{emission of } e^-$ from regions of high surface E field. Prevalent in SRF cavities due to high gradient.

Limits cavity performance:

- Extra load on RF power

 → lower cavity gradient;
 → consequences for
 delivery to experiments.
- X-rays

 \rightarrow long term damage to equipment.

[1]

Discovery, accelerated

Field Emission (FE) in SRF Cavities

[1]

 $\textbf{FE} \rightarrow emission$ of e^- from regions of high surface E field. Prevalent in SRF cavities due to high gradient.

Limits cavity performance:

- Extra load on RF power

 → lower cavity gradient;
 → consequences for
 delivery to experiments.
- X-rays

 \rightarrow long term damage to equipment.

FE seen on e-Linac view screen.

※TRIUMF

Field Emission (FE) in SRF Cavities

[1]

 $FE \rightarrow emission of e^-$ from regions of high surface E field. Prevalent in SRF cavities due to high gradient.

Limits cavity performance:

- Extra load on RF power \rightarrow lower cavity gradient: \rightarrow consequences for delivery to experiments.
- X-ravs

 \rightarrow long term damage to equipment.

Emitters are μm to sub μm sized contaminants \Rightarrow **dust!**

Migrate back into SRF cavities during operation...

FE seen on e-Linac view screen.

ccelerate

Particulate Collection

WNPPC 2025, Banff

Particulate Collection

February 14th, 2025

WNPPC 2025, Banff

8/17

℀TRIUMF

Analysis tools:

Scanning Electron Microscope (SEM)

Energydispersive X-ray Spectroscoy (EDX)

Composition Analysis

accelerated

Stainless steel

Composition Analysis

accelerated

Discovery

Composition Analysis

Stainless steel

Copper-silver alloy

February 14th, 2025

Discovery, accelerated

Composition Summary

Grain statistics: 87 beamline grains & 5 control grains analyzed.

WNPPC 2025, Banff

Composition Summary

Where do these come from??

Potential origins of elements:

Element	Source
Al/Pd/Au	Test stand or electrical connectors
К	Human contamination
Ті	Cathode electrodes
Stainless Steel (Fe+Ni+Cr)	Most beamline elements
Cu/Ag	Braising, anode electrodes
In/Ba	Cathode material

Experimental Studies

Conceived an **off-line test setup** to reproduce the accelerator environment, with control on key parameters.

Goal: study each step in dust migration process:

- Charging $\Rightarrow {\rm e^-} ~ \& ~ \gamma$
- **Detachment** \Rightarrow baking
- Migration ⇒ mechanism unknown...

Discovery, accelerate

Thank you Merci

Root causes of field emitters in SRF cavities placed in CEBAF tunnel.

Technical report, Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA ..., 2016.

Appendix: DarkLight Beam Optics

Beam optics for DarkLight present challenges:

- · Highly scattered electron beam transport.
- · Space constraint from experiment detectors.

Combination of electromagnets and permanent magnets:

- · Pros: space efficient
- · Cons: cannot vary field strength

Optics designed for a specific beam energy \Rightarrow rely on stable RF performance.

*** TRIUMF**

Appendix: DarkLight Beam Optics

Optics design optimized in envelope code TRANSOPTR

February 14th, 2025

WNPPC 2025, Banff

accelerate Discovery

16/17

SRF performance

Quality factor (Q) vs Acceleration Gradient (Ea) of e-Linac cavity over time. (Power Stored/Dissipated)

If we cannot deliver required energy for DarkLight, there is no experiment!

WNPPC 2025, Banff

17/17