

## Machine Learning Approaches to Segmentation for Reconstruction in the ATLAS Calorimeter

Joshua Himmens with Dr. Maximilian Swiatlowski •



### Outline

- Goals of Particle Flow (PFlow)
  - Current approaches to PFlow

\*\*\*\*

2

•

- JetPointNet as an approach to PFlow
- Data processing pipeline
  - Data sets
- Loss, metrics
- Preliminary results
- Ongoing work
  - Implementation into ATHENA

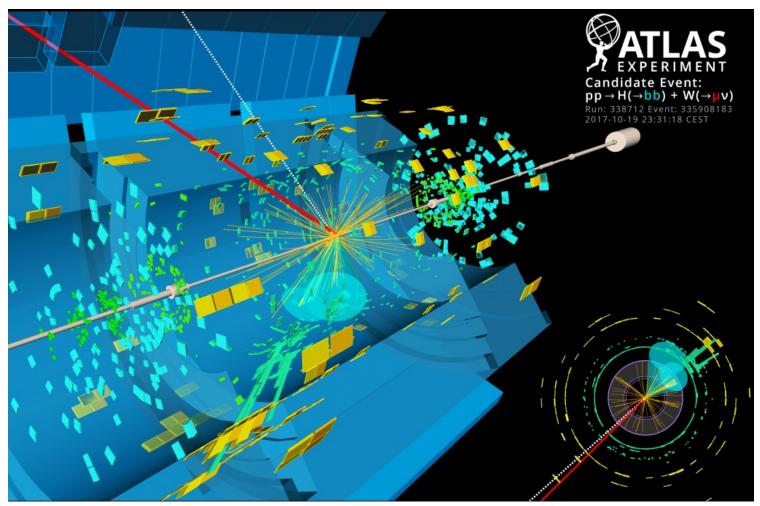
•

# ATLAS is a general-purpose detector at the Large Hadron Collider (LHC)

- ATLAS detects proton-proton collisions (mostly)
- With up to 13.7TeV of energy
- Every 25ns (40MHz)

ATLAS participates in a broad range of research:

- Higgs properties
- Dark matter searches
- Supersymmetry
- Test the standard model



## ATLAS uses complementary detector systems to maximize accuracy across the energy domain

ATLAS employs 2 types of detectors (relevant to this investigation)

Inner Tracker:

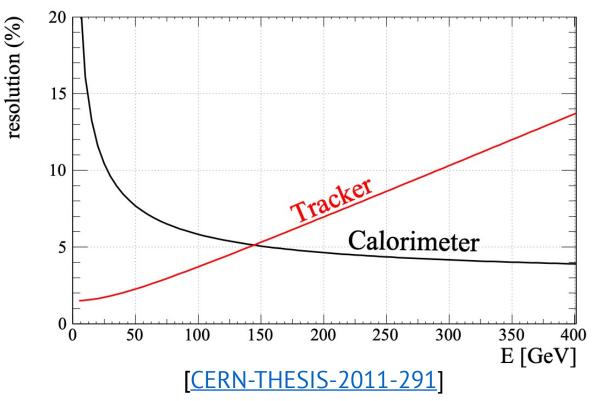
- High resolution at low  $p_T$  and E
- Detects only charged particles

#### Calorimeters:

- High resolution at high  $p_T$  and E
- Dominated by stochastic terms at low E
- Detects most particles

Particle Flow (PFlow) hopes to combine measurements for excellent overall resolution.

Approximate Single Pion Resolution,  $\eta = 0$ 



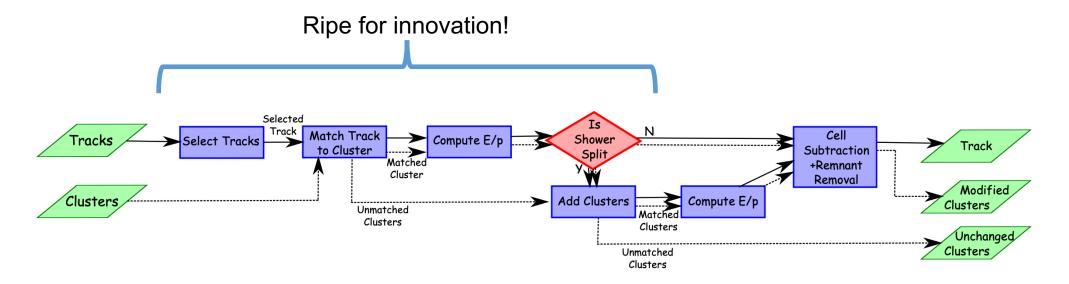
## What does this look like in practice?

- We want to match each track with the cells that it causes.
- Some cells have no track.
- Some tracks have no cells.

Joshua Himmens, WNPPC 2025

## The current segmentation system fails in complex environments

- Clusters are formed by energy deposits
- Segmentation relies on hand tuned distances between tracks and cluster
- The algorithm relies on hand tuned parameters for each step
- In dense environments this system fails to associate tracks to clusters



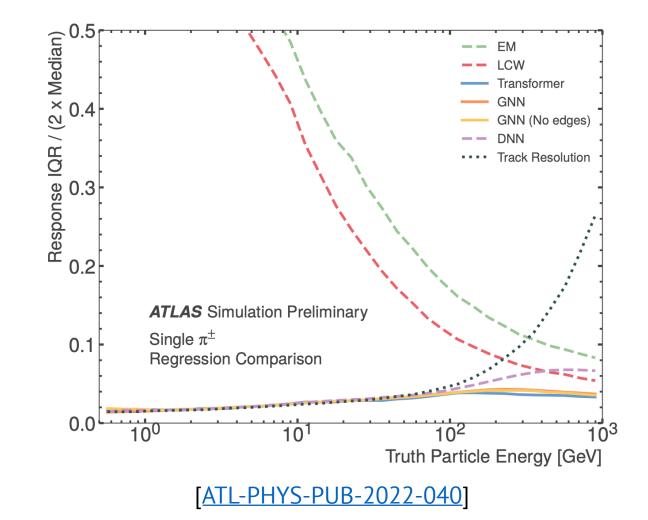
## Why use machine learning?

Convolution and graph neural nets have shown success already at hadronic calibration.

ATL-PHYS-PUB-2022-040

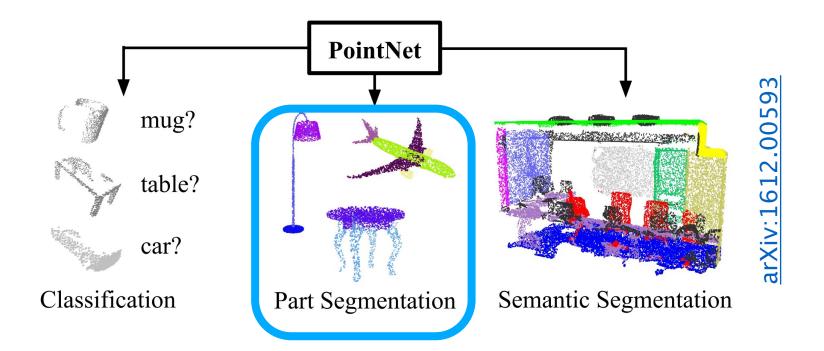
The core advantages:

- Dissolve cluster boundaries
  - Permits cell-wise attribute
- Higher energy accuracy
  - Enables **partial cell attribution** beyond cluster-cell splitting
- Permits more information during reconstruction, the model can use more subtle heuristics
  - More accurate than  $\Delta R$  (distance) in dense environments

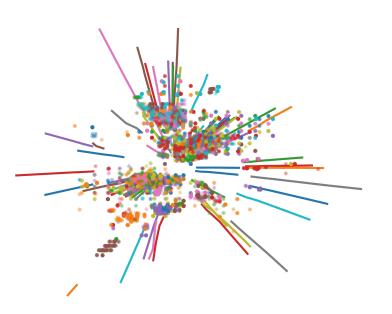


### JetPointNet as an approach to PFlow

- Represent hits as 3D points
  - Sparse and efficient representation
- Provides spatial invariance



### How JetPointNet works

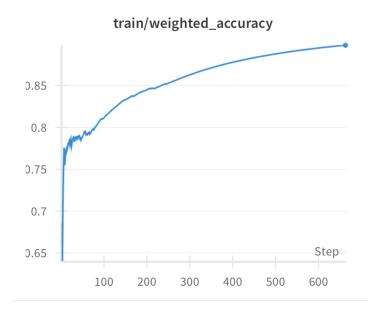


Generate events with Geant4 and Athena or with data augmentation system Split into batched training samples using  $\Delta R$  cut on each track

2000-2500

1000

1500



Train on energy deposition by track

-3000

-4000

-5000

-6000

-7000

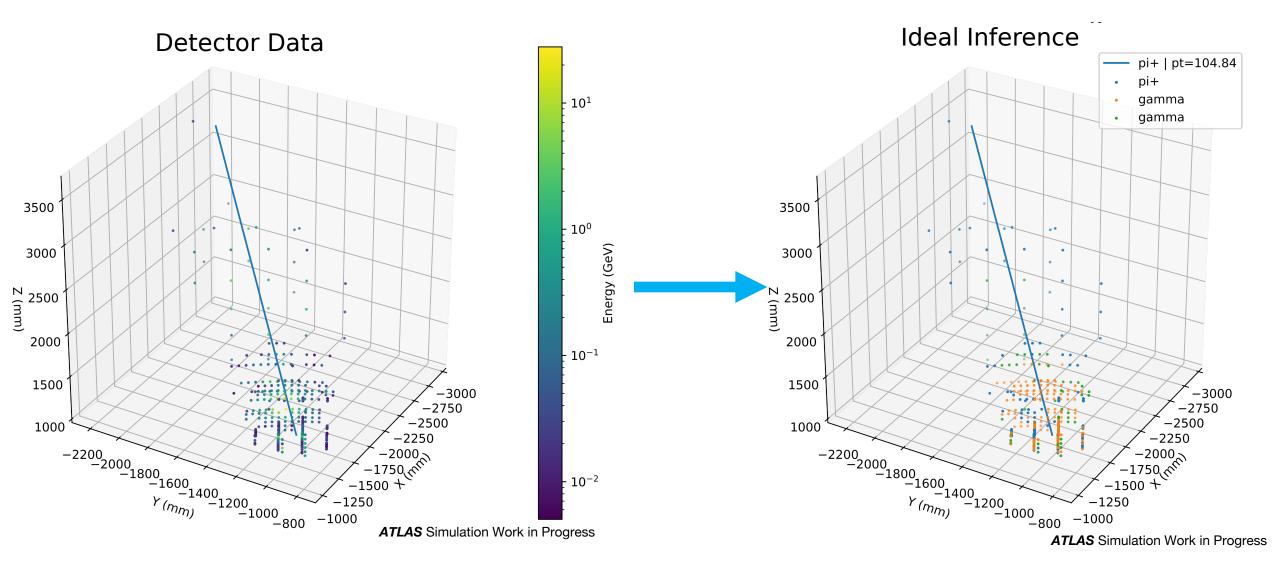
-1000

-1500

-2000

\*\* Plots for illustrative purposes only

### A visual intuition for the dataset and model aims



10





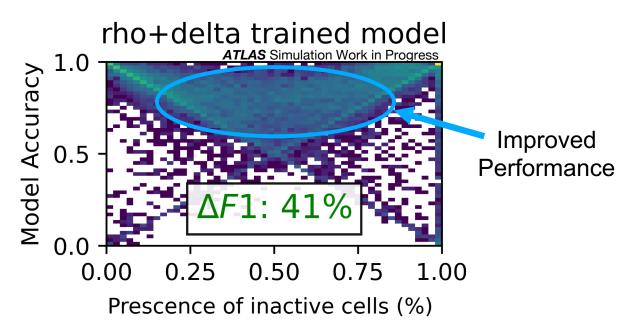
## Binary categorization is successful with $\rho$ and $\Delta$ meson showers

Goal: Determine which energies come from each decay product (pion and two photons)

The model is successful at attributing simple hadronic showers (events with 1-3 tracks).

Metrics:

- Accuracy: <u>cells<sub>correct</sub></u>
- F1 Score: Accuracy trade off factor

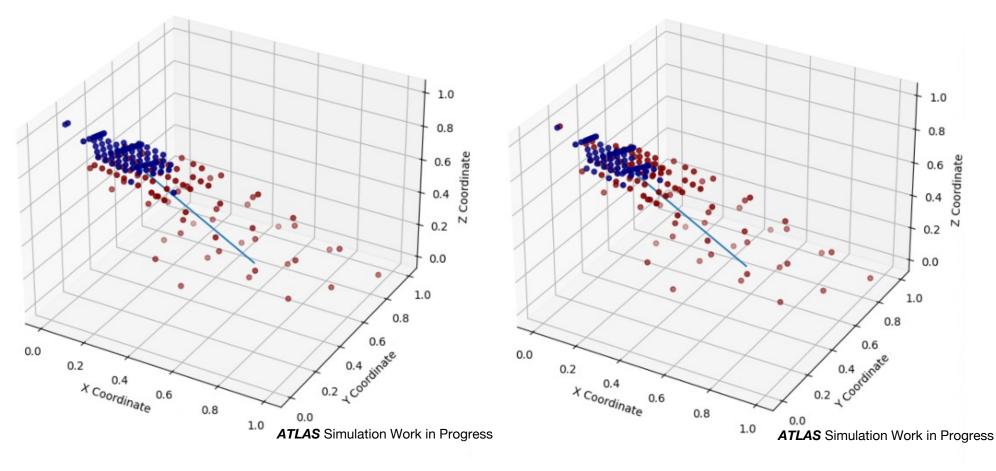


### The model shows success on $\rho$ data

Energy Primarily Neutral Particles Energy Primarily from Track

Simplified data:  $\rho^{\pm} \rightarrow \pi^{\pm} + \pi^{0}$ 

Truth Data – 83 Activations



Truth Activation Energy = 1159 GeV

Model Activated Energy = 1179 GeV

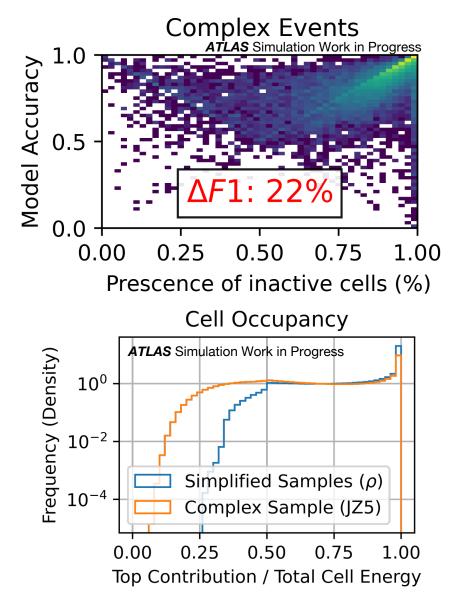
Model Predictions – 98 Activations

13

\*\* Plots for illustrative purposes only

### **Limitations of binary classification**

- The model tends to learn lower-order relationships
  - Modal decay deeply entrenches the loss function
  - Class imbalance where most cells and most energy is not associated with the track
- Cells do not conform well to a binary
  - Binary labels are a poor heuristic for particle occupancy of cells in jets
  - In jets, cells can contain significant deposits from many particles





## **Ongoing Work**

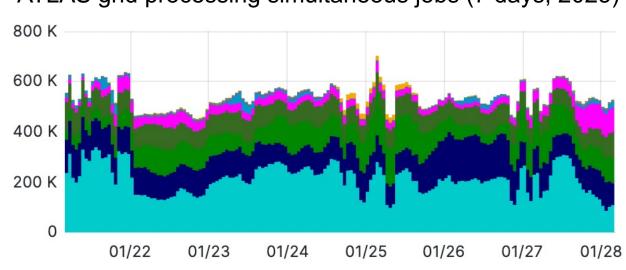
## **Ongoing work: Implementing inference in ATLAS**

#### **Problem 1: Implementing Machine** Learning into ATLAS

- Huge computational effort goes • into reconstruction and simulated reconstruction
- Our framework does not natively support machine learning workflows

#### Problem 2: Developing an algorithm to apply segmentation

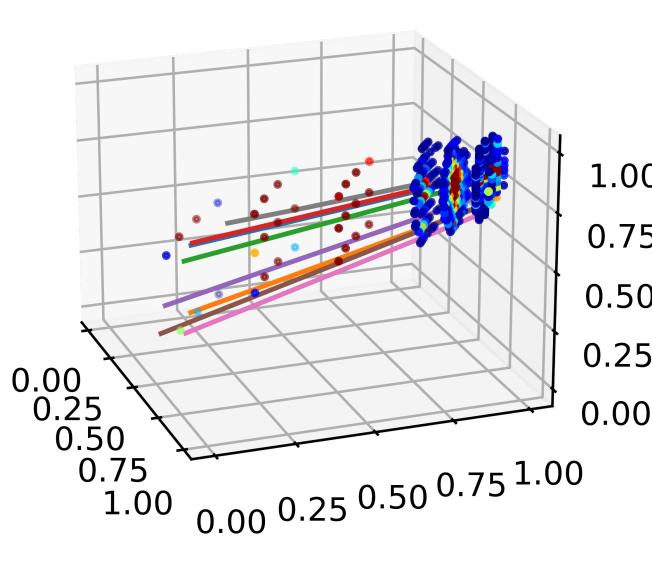
Inference cannot be complete in • isolation.



#### ATLAS grid processing simultaneous jobs (7 days, 2025)

## **Summary**

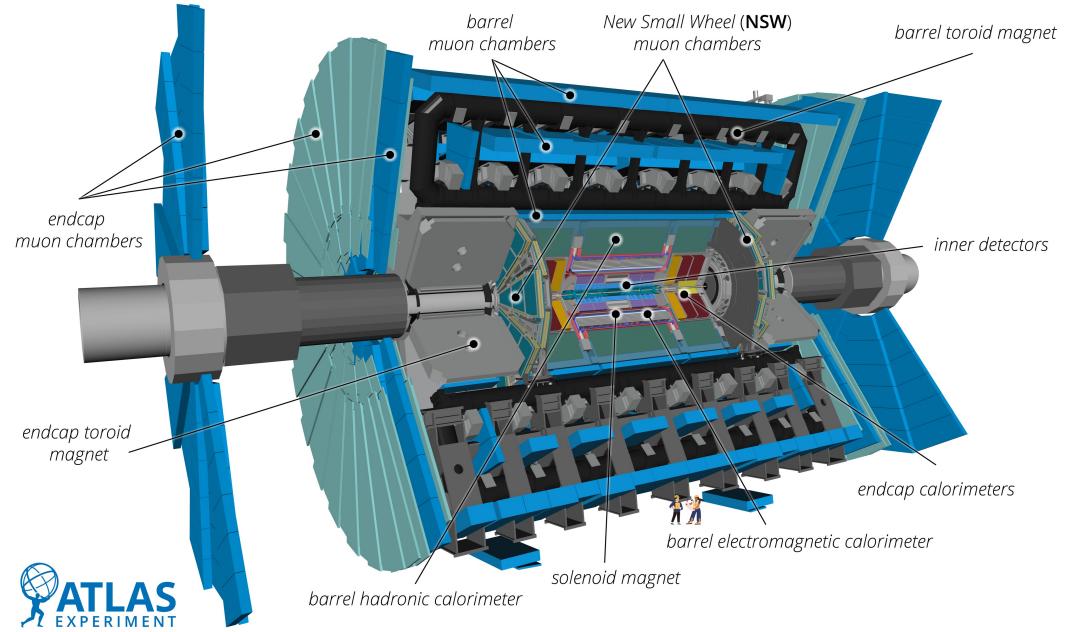
- ATLAS employs complimentary detector system
- PFlow increase precision across the energy domain through coincident signal analysis
- Combining detector signals is a non-trivial problem
- Machine learning approaches to particle flow are promising



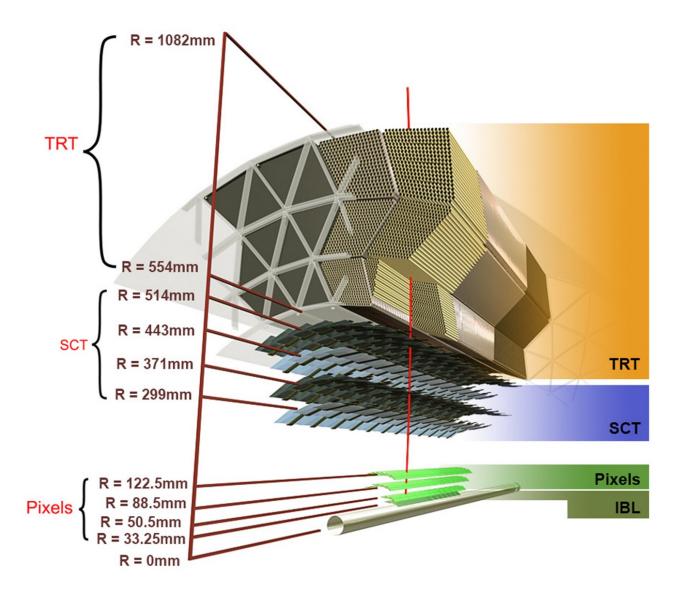


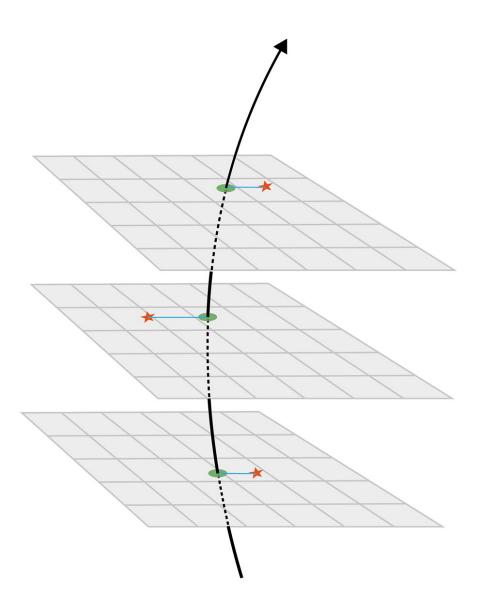
#### Backup

#### **The ATLAS detector**



#### **The ATLAS Inner Detector**





#### ATLAS p-flow algorithm [ATL-PERF-2015-09]

For track in descending pT:

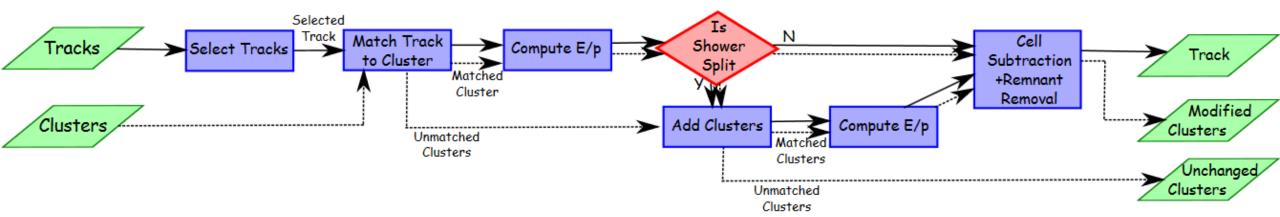
•associate closest topo-cluster based on angular distance  $\Delta R'$ 

•compute expected energy deposit based on the topo-cluster position and track momentum

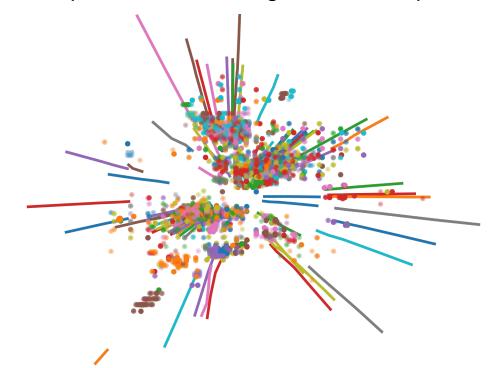
•if expected and measured energies differ significantly, associate more topo-clusters

•subtract the expected energy by calo cells

•if remaining energy lies within expected fluctuations, remove the remnants



#### **Data Representation**



Data is represented as a single combined point cloud

#### Data encoded into each point

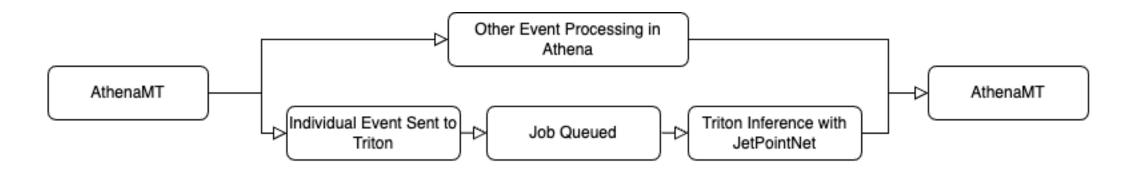
| Point type (e.g. cell hit, track, padding) |
|--------------------------------------------|
| ΔR                                         |
| Track Identifier (for tracks)              |
| Normalized coordinates                     |
| Track $\chi^2$ /dof (for tracks)           |
| Cell E (for cells)                         |
| Track pt (for tracks)                      |
| Cell Sigma (for cells)                     |

## **Ongoing work: Implementation into Athena with NVIDIA Triton**

With Dr. Sascha Diefenbacher (Lawrence Berkley National Laboratory)

- Create containerized python runtime inside of Athena
  - Permits arbitrary data pre-processing, inference and attribution.
- Use Athena as a gRPC client for event-wise calls to the inference server
- Batching is handled directly by NVIDIA Triton

Thinking about implementation into core framework Academic solving, solving problems at scale Speak to how much compute



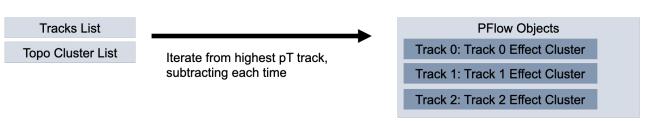
# **Ongoing work: Building an iterative segmentation system**

Event level metrics requires inference on all tracks

#### **Iterative inference:**

Iterate through all tracks performing segmentation and subtraction at each step.

- May require data augmentation of the training set.
- Requires "garbage collection" to remove remaining partial cell energies.
- Each iteration must resemble an event



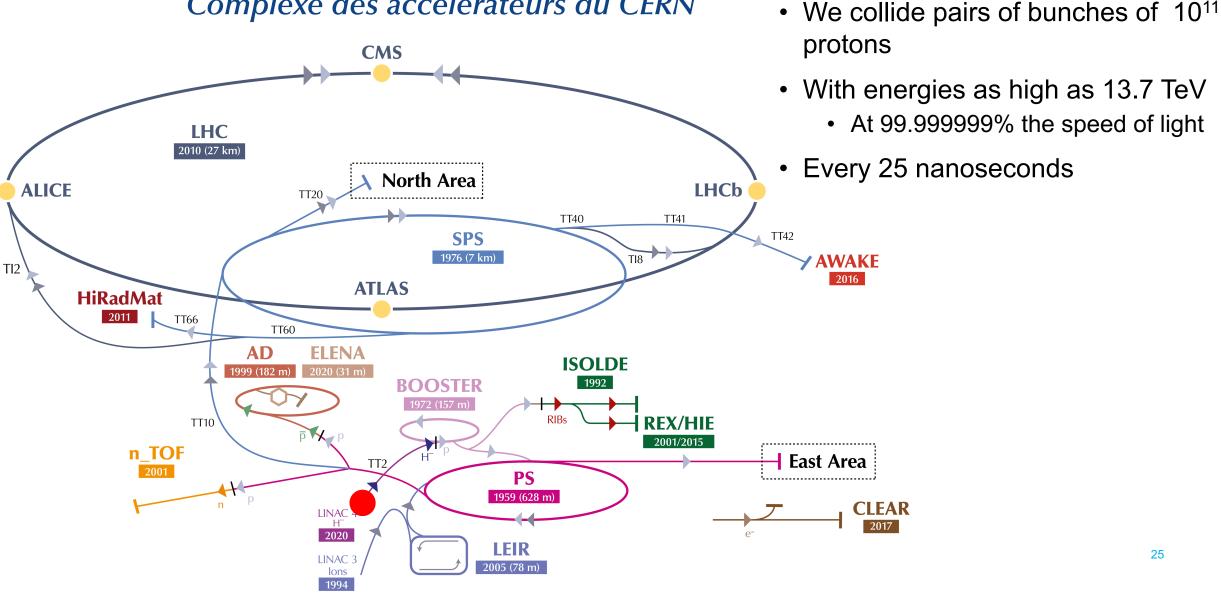
#### **Common inference:**

Apply inference to each track and assign cell energies based on aggregate predictions.

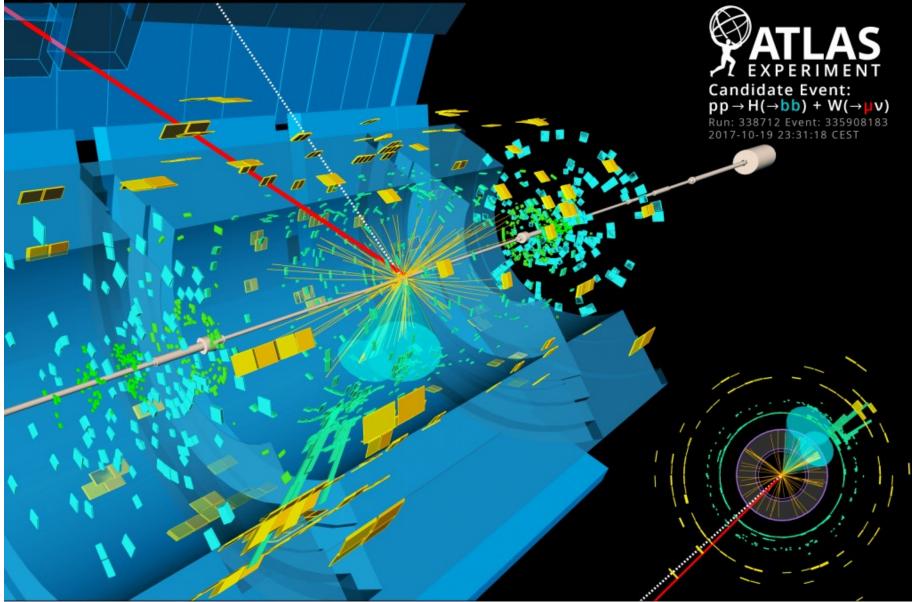
- Increases overall data complexity as clusters are never removed
- Potentially significantly faster as event data does not need to be modified as an object

#### How do we collide?

#### The CERN accelerator complex Complexe des accélérateurs du CERN



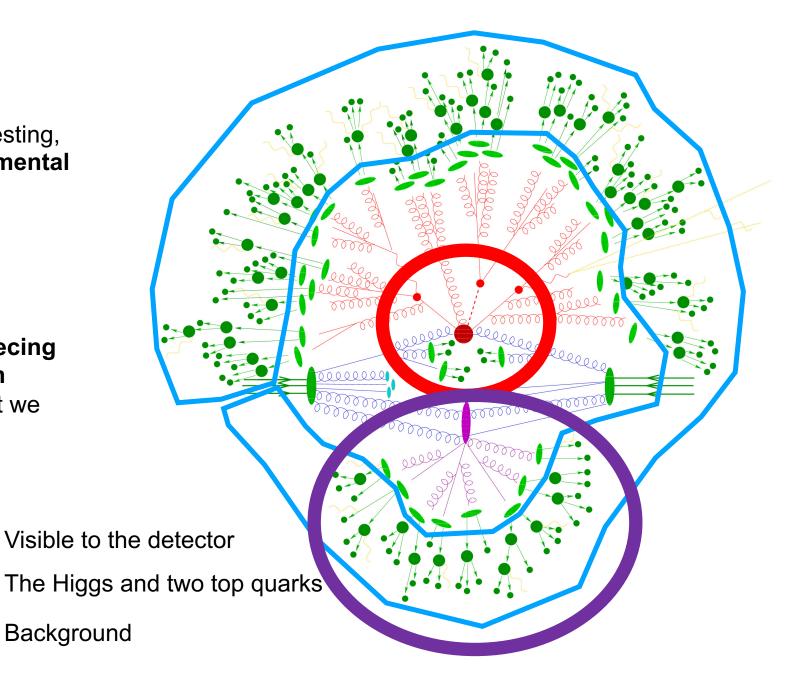
#### What happens when we collide?



### **Particle Flow**

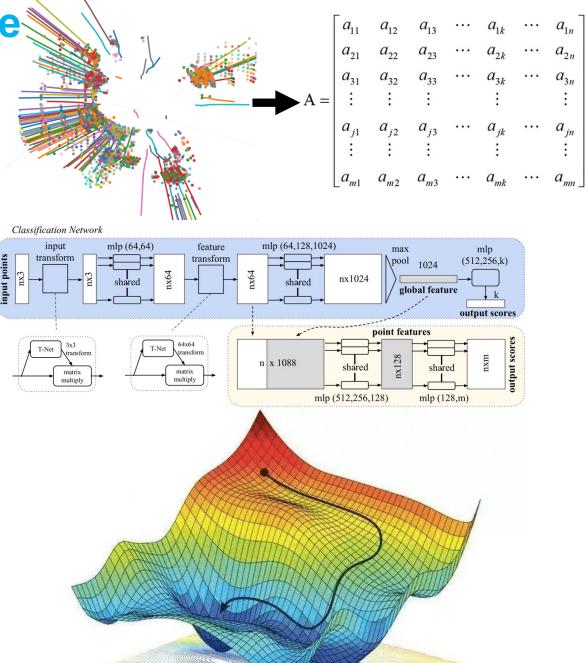
While the results are interesting, we care about the fundamental physics, which requires understanding the decay process

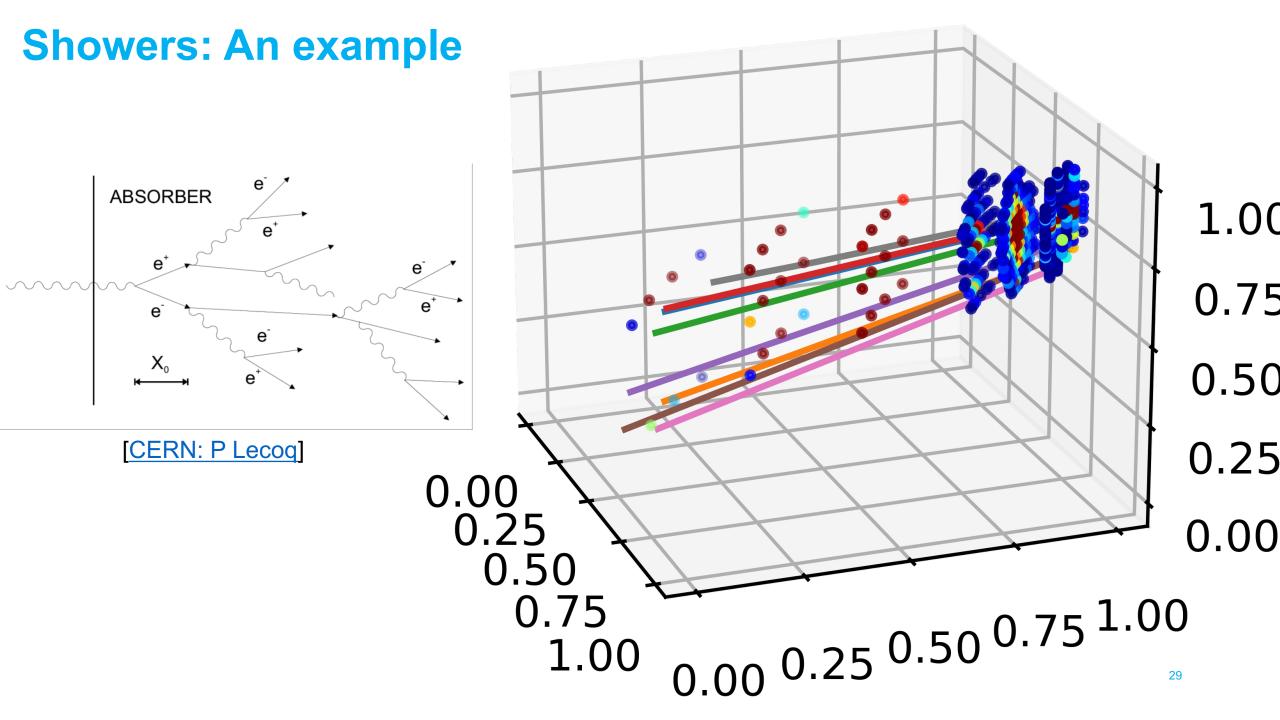
PFlow is the practice of **piecing together the signals from multiple detectors** so that we have the information to **reconstruct the event** 



## Deep Learning: A Crash Course

- Data needs a standard format (constant size matrix matrix)
- We define a set of matrix operations to the input data
- Each operation contains a set parameters (in our case over 6 million!)
- Gradient Descent: We define a loss function that the model attempts to minimize





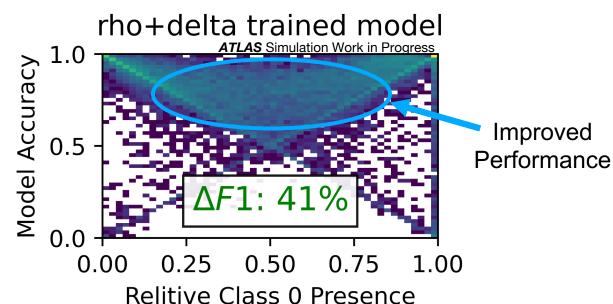
## Binary categorization is successful with $\rho$ and $\Delta$ meson showers

Goal: Determine which energies come from each decay product (pion and two photons)

The model is successful at attributing simple hadronic showers (events with 1-3 tracks).

#### Metrics:

- Accuracy: <u>cellscorrect</u>
  - cells<sub>total</sub>
- F1 Score: Accuracy trade off factor
- Baseline: Random model with correct class balance



| Dataset     | Model        | Accuracy | F1-score                                  |
|-------------|--------------|----------|-------------------------------------------|
| rho + delta | PointNet     | 0.83     | 0.78                                      |
|             | smart_random | 0.63     | 0.37<br>ATLAS Simulation Work in Progress |