% TRIUMF

Beam Safety Shut-Off System for TRIUMF's ARIEL e-Linac based on Cherenkov Fiber

Richard Hermann

TRIUMF Accelerator Development Group

- Beam Safety Shut-Off System
 - There to detect beam malfunction and stop it in < 10 μs

200 W beam (660 uA, 300 keV) went through a bellow and vented the entire beamline

- Beam Safety Shut-Off System
 - There to detect beam malfunction and stop it in < 10 μs

for TRIUMF's ARIEL e-Linac

- TRIUMF: Canada's particle accelerator center TRI-University Meson Facility
- ARIEL: Advanced Rare Isotope Laboratory
- e-Linac: Electron Linear accelerator

- Beam Safety Shut-Off System
 - There to detect beam malfunction and stop it in < 10 μs

for TRIUMF's ARIEL e-Linac

- TRIUMF: Canada's particle accelerator center TRI-University Meson Facility
- ARIEL: Advanced Rare Isotope Laboratory
- e-Linac: Electron Linear accelerator
- based on Cherenkov Fiber
 - optical fiber emitting Cherenkov radiation (photons) if particles travel faster than light in the material

<u>Cherenkov radiation - Wikipedia</u> Advanced test reactor Idaho National Laboratory

Beam Loss Monitors

- Long Ionization Chamber (LIC)
 - + Variable continuous coverage (1.5m, 2m, 3m)
 - + Robust, proven technology
 - Bulky
 - Slowest response
 - Maintenance intensive

Beam Loss Monitors

- Bi₄Ge₃O₁₂ scintillator coupled to Photo-multiplier tube
 - + High sensitivity/precision (~35 μ C/Gy) for chronic beam loss

(readout is limit)

- + Fast response
- Very local information (multiple needed \rightarrow costly)
- Electronics close to beam (aging)
- Long cables necessary
- (= capacitor, signal degradation)

Beam Loss Monitors

- Cherenkov Fiber with PMTs
 - + High flexibility

+ Fast response

+ Simple

- + Electronics outside of hall
- Lower sensitivity

- Signal loss

(complete beamline, close to beam)
(readout is limit)
(only two channels)
(easy development/exchange)
(x2-x3 smaller then LIC)
(attenuation)

Cherenkov Fiber Principle

If a charged particle passes through a medium with a speed larger than the phase velocity of light in that medium then photons are emitted.

RIUMF

$$rac{c}{n} < v_{
m p} < c$$

wavelength of Cherenkov radiation: particle's speed (B=v/c) and refractive index (n) of the material not on the entry angle

Cherenkov Fiber Principle

RIUMF

Cherenkov Radiation in Optical Fibres as a Versatile Machine Protection System in Particle Accelerators, 16.02.2023, J. Wolfenden et al., Sensors 2023, https://doi.org/10.3390/s23042248

dump

e-Linac Machine Protection Systems

RIUMF

- LICs

- BGOs & PMTs
- Cherenkov Fiber:
 - 1x 100m Fiber + 2x PMT

Results so far?

Sweep Measurement

Shut off: as simple as setting an electric charge threshold (basically plug&play)

Sweep Measurement

Shut off: as simple as setting an electric charge threshold (basically plug&play)

Signal is different up- and downstream (as expected)

Conclusion

- Proof of Concept (=could work already)
- Advantages of Cherenkov Fiber over current system (LICs or BGO&PMTs):
 - Adjustable: just a fiber, hardly any space consumption, can be fed through magnets or placed very close.
 - Scalable: one system with two PMTs for whole beamline
 - Cost effective: only two channels necessary
 - Less complex: great for development, change/test electronics on the fly

- Up next:
 - Proof and improve time delay measurement for **position measurement**
 - Better materials: replace old PMT, change to double cladding fiber, implement RedPitaya
 - Extra fiber with windings only close to Cryo to subtract background
 - Test if protons give distinguishable signal to electrons

% TRIUMF

Thank you Merci

Contact: Richard Hermann rhermann2@triumf.ca

www.triumf.ca Follow us @TRIUMFLab

Extra Slides

- Beam Safety Shut-Off System
 - There to detect beam malfunction and stop it in < 10 μs

for TRIUMF's ARIEL e-Linac

- TRIUMF: Canada's particle accelerator center TRI-University Meson Facility
- ARIEL: Advanced Rare Isotope Laboratory
- e-Linac: Electron Linear accelerator

based on Cherenkov Fiber

 optical fiber emitting Cherenkov radiation (photons) if particles travel faster than light in the material

<u>Cherenkov radiation - Wikipedia</u> Advanced test reactor Idaho National Laboratory

Comparison

RIUMF

with

WNPPC 2025

	Advantages	Disadvantages	
LIC	Proven technology, sensitive, robust	Slowest response, bulky, maintenance- intensive Individual channels - more expensive	Individual channels More expensive,
BGO&PMT	Fast response, flexible, high precision, very sensitive	very local information, many needed → costly, electronics close to beam (aging), long cables necessary - basically large capacitor, degradation of signal, Individual channels - more expensive	
Cherenkov	Fast, flexible, simple, suitable for large setups, accessibility to hall, test different pmts on the fly, great for development,, cheaper as for two channel	lower sensitivity, signal loss	

Cherenkov Fiber Principle

 $rac{c}{n} < v_{
m p} < c$

If a charged particle passes through a medium with a speed larger than the phase velocity of light in that medium then photons are emitted

RIUMF

wavelength of Cherenkov radiation: particle's speed (B=v/c) and refractive index (n) of the material **not** on the entry angle

 $\cos heta = rac{1}{neta}$

→ Emitted spectral range remains unchanged

βct

- $rac{d^2 E}{dx\,d\omega} = rac{q^2}{4\pi} \mu(\omega) \omegaigg(1-rac{c^2}{v^2 n^2(\omega)}igg)$
- \rightarrow Spatial and directional distribution of the emitted photons can vary with the angle.
- > May be used to distinguish different particles via the different emission spectra (e.g. protons and electrons)

e-Linac use cases (high intensity electron beam)

- DarkLight
 - ATOMKI experiment with Beryllium 8 observed hypothetical X17 Boson (mass 17 MeV/c2)
 - Electrons on thin target (Tantalum, C12-foil, Be8) shall create γ and X17
 - Min. 30MeV, 300uA, 10kW, **1000h cw**

THz

K. Pachal: "The DarkLight experiment at TRIUMF and the hunt for a new boson"

*****TRIUMF

e-Linac use cases (high intensity electron beam)

e-Linac use cases (high intensity electron beam)

DarkLight

FLASH

► THz

- Sub mm high charge electron bunches (THz wavelengths are 100µm – 1mm)
- Extents the Spectroscopy range
- For now, used for beam tuning
- Pre-requisite for energy recovery

***TRIUMF**

x

Pathway

RIUMF

Setup

Quartz-fiber

PMTs:

- "New" (designed 2016)
 H10720 series
 ~0.7V with 5V bias
- "Old" (designed 2000)
 R14755U-100
 ~800V

2024-12-05 Results

- Viewscreen in the beam upstream EABT:VS1
- Signal for both channels, even with visible time shift
- > → ~300ns

