

Winter Nuclear and Particle Physics Conference 2025

Photon contributions to parton energy loss at high Q^2

Amit Kumar Department of Physics University of Regina

Based on (arXiv:2502.02667)

In collaboration with Gojko Vujanovic

Feb 16th, 2025

- Introduction to Quark-Gluon plasma and jet quenching
- □ Stages of a parton shower and high virtuality sector
- Image: A series of the seri
- □ Fermion-to-Boson conversion process
- Heavy-quark energy loss and coherence effects
- **Connections to Electron-Ion Collider (EIC) physics**

Amit Kumar, WNPPC, Feb 16th, 2025

Outline

Nuclear matter under extreme condition

Hadrons: (At ordinary temperature) Bound state of Quarks-Gluons

Quarks-Gluon Plasma

$T \gtrsim 200 \text{ MeV}$

Amit Kumar, WNPPC, Feb 16th, 2025

Nuclear matter under extreme condition

Hadrons: (At ordinary temperature) **Bound state of Quarks-Gluons**

Quarks-Gluon Plasma

$T \gtrsim 200 \text{ MeV}$

s(T)/T³

Sudden increase in entropy density near the transition region Due to increase in the number of degrees of freedom (DOF) □ Interpreted as deconfinement of quarks and gluons

Amit Kumar, WNPPC, Feb 16th, 2025

Entropy density prediction Lattice QCD (Equation of State)

Nuclear matter under extreme condition

Pressure density prediction Lattice QCD (Equation of State)

Sudden increase in pressure density near the transition region Due to increase in the number of degrees of freedom (DOF) □ Interpreted as deconfinement of quarks and gluons

Amit Kumar, WNPPC, Feb 16th, 2025

Quarks play significant role

Creation of the Quark-Gluon Plasma (QGP)

Relativistic Heavy-Ion Collider (RHIC) at BNL, NewYork, USA

Collide two nuclei @ 5-200GeV per nucleon pair

Amit Kumar, WNPPC, Feb 16th, 2025

Large Hadron Collider (LHC) at CERN, France-Switzerland border

Collide two nuclei @ 2.76TeV/5TeV per nucleon pair

Creation of the Quark-Gluon Plasma (QGP)

Initial state: Two Lorentz-contracted nuclei approach each other
Pre-equilibrium state: undergo hard collisions produce hard probes and drive the system to thermalization in the form of QGP matter (quark density increases rapidly)
QGP phase: the QGP expands hydrodynamically
Hadronization: the QGP cools down and new hadrons are formed
Freeze-out: hadron gas is so dilute that the interactions cease

Jet evolution in QGP a multi-scale phenomenon

$$q^2 = (q^0)^2 - |\vec{q}|^2 - m^2$$

Lifetime, $\tau_f = \frac{2E}{Q^2}$

Relevant theoretical framework High E, High Q: pQCD, Higher-twist approach

High E, low Q: **On-shell parton transport model**

High E, Low Q phase: (Scattering dominant)

Low E, low Q: **Strong coupling formalism** AdS-CFT

QGP is gluon dominant in early stage. **Quark density increases in evolution**

Jet evolution in QGP a multi-scale phenomenon

(1) Incomplete medium-induced photon emission rates are present in current Monte Carlo simulations energy loss models

(2) Mechanism for heavy-quark energy loss in QGP?

(3) Path length dependene of energy loss?

(4) Conversion processes: (QGP is gluon dominant at early stage then quarks generated)

Medium-induced single photon emission scattering kernels ($\alpha_{em}\alpha_s$)

Bremsstrahlung photon emission Kernel

Uvertual photon emission Kernel

Amit Kumar, WNPPC, Feb 16th, 2025

(Use perturbative QCD to evaluate Feynman Diagrams)

Single emission and single scattering kernel at high Q^2

□ Important Terms in the Scattering kernel:

Path length

Amit Kumar, WNPPC, Feb 16th, 2025

Forwad scattering diagram (Kernel-1)

Momentum scaling of in-medium parton (Glauber)

Quark Mass effects

Single emission and single scattering kernel at high Q^2

□ Important Terms in the Scattering kernel:

Phase interefence (positive definite)

Non-perturbative in-medium operators

 $\langle P_{A-1} | A^+(\zeta^-, \Delta z^-, \Delta z_\perp) A^+(\zeta^-, 0) | P_{A-1} \rangle e$

Amit Kumar, WNPPC, Feb 16th, 2025

(TMD-like phase space)

Single emission and single scattering kernel at high Q^2

□ Important Terms in Scattering kernel:

Amit Kumar, WNPPC, Feb 16th, 2025

Forwad scattering diagram (Kernel-3)

Momentum scaling of in-medium parton (Glauber) Quark Mass effects

Conversion processes (Suppressed by energy)

TMD-like phase space

Single emission and single scattering kernel at high

□ Important Terms in Scattering kernel:

+Splitting Function

$$\left[\frac{1+(1-y)^2}{y}\right]$$

Phase coherence effect

$$\frac{2 - 2\cos\left\{\frac{(\ell_{2\perp} - k_{\perp})^2 + y^2 M^2}{2y(1 - y)q^-}\zeta^-\right\}}{(\ell_{2\perp} - k_{\perp})^2}$$

 $\ell_{21} \approx k_{1}$, amplitude square is maximum In-medium quark can resolve the splitting

♦Non-perturbative in-medium operators

$$\frac{1}{yq^{-}} \left\langle P_{A-1} \left| \bar{\psi}(\zeta^{-}, 0) \frac{\gamma^{+}}{4} \psi(\zeta^{-}, \Delta z^{-}, \Delta \vec{z}_{\perp}) \right| P_{A-1} \right\rangle e^{i\Delta \zeta}$$

Contains transverse momentum dependence in addition to collinear momentum

Amit Kumar, WNPPC, Feb 16th, 2025

 $i \Lambda -$

Forwad scattering diagram (Kernel-3)

Momentum scaling of in-medium parton (Glauber) Quark Mass effects Conversion processes (Suppressed by energy)

$$\left[\frac{\vec{\ell}_{2\perp}^2 - yM^2}{2yq^{-}} + \frac{\left(\vec{\ell}_{2\perp} - \vec{k}_{\perp}\right)^2 + M^2}{2q^{-}(1 - y + \eta y)}\right]$$

TMD-like phase space

Path length dependence of scattering kernel

\Box Bremsstrahlung photon emission, single scattering kernel for quark mass M = 0

Kernel-1

(Length integrated kernel)

☐ Kernel shows positive and increasing trend with the path length traversed

Amit Kumar, WNPPC, Feb 16th, 2025

Kernel-2

Path length dependence of scattering kernel (conti.)

\Box Virtual photon emission scattering kernel for quark mass M = 0

Kernel-3

(Length integrated kernel)

Here, y is momentum fraction carried away by radiated photon □ Kernel shows positive and increasing trend with the path length traversed □ Interference term

Amit Kumar, WNPPC, Feb 16th, 2025

Kernel-4

Path length dependence of scattering kernel for heavy-quarks

□ Bremsstrahlung photon emission, single scattering kernel for charm and bottom quark mass

Kernel-1

Bottom quark demonstrates large mass effects compared to charm quark □ Kernel-3 and kernel-4 also show similar behavior

Amit Kumar, WNPPC, Feb 16th, 2025

(Length integrated kernel)

Jet transport coefficients in cold nuclear medium

□ Factorized approach to jet evolution

Transport coefficient \hat{q} : $\hat{q}(\vec{r},t) = \frac{\langle \vec{k}_{\perp}^2 \rangle}{L} \propto \langle M | F_{\perp}^+(y^-,y_{\perp}) F^{+\perp}(0) | M \rangle$ **Transport coefficient** $\stackrel{\wedge}{e}$: $\hat{e}(\vec{r},t) = \frac{\langle k_z \rangle}{L} \propto \langle M | \partial^- A^+ (y^-, y_\perp) A^+ (0) | M \rangle$ Transport coefficient \hat{e}_2 :

 $\hat{e}_2(\vec{r},t) = \frac{\langle k_z^2 \rangle}{L} \propto \langle M | F^{+-}(y^-, y_\perp) F^{+-}(0) | M \rangle \qquad \text{to Ele}$ Amit Kumar, WNPPC, Feb 16th, 2025

Nucleus

- Transport coefficient arise from pQCD based calculations
- **Replace QGP thermal state with hadronic** nuclear state

⇒Energy loss calculation can be extened to Electron-Ion Physics

Summary

- \Box First effort to derive Bremmstralung photon scattering kernel at high Q^2
- Real photon and a quark final state
- Real photon and a gluon final state
- virtual photon contributions
- Interference/coherence effects
- □ Incorporated Fermion-to-Boson conversion processes
- Demonstrated Heavy-quark energy loss effects on scattering kernel
- Connections to Electron-Ion Collider (EIC) physics

Amit Kumar, WNPPC, Feb 16th, 2025

Path length dependence of scattering kernel for heavy-quarks

□ Virtual photon emission scattering kernel for charm and bottom quark mass

Kernel-3 and 4

Bottom quark demonstrates large mass effects compared to charm quark

Amit Kumar, WNPPC, Feb 16th, 2025

(Length integrated kernel)

