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What are magnetic monopoles?

 Question:
- Could a magnetic particle with one pole exist?
 Dirac Magnetic Monopoles:

- Magnetic monopoles are particles with a single magnetic |
charge - either South or North.

- They are analogous to electrons - fundamental particle
with electric charge “e”".

Figure : CERN

. In contrast to Dirac magnetic monopoles, the monopoles in
Grand Unified Theory are composite particles that can be
oroduced in early universe.

- ATLAS experiment is able to look for point-like and
structureless Dirac monopoles - No assumptions about the
spin and Mass.
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Why do we look tor them”?

- Their existence will restore the electric-magnetic dual symmetry in Maxwell’s equations.

oB OE
V-E=p.. VxE=-J,=on. V.B=p, . VXB=Jo+o

( p,, - magnetic charge density, p, - electric charge density ), (J,, - magnetic current, J, - electric
current).

- Their existence will explains the quantisation of electric charge. According to Dirac guantization

condition = — , the smallest magnetic charge a monopole can possess:

hc 2

|
= — ~ 68.5
oD 2a )

— Due to magnetic charge conservation, a monopole would be stable (long lived particles).

—  Similar energy loss as of an ion carrying electric charge |z| = 68.5e hence, magnetic monopoles
along with Highly-Electric-Charge-Objects (HECOs) are knowns as Highly lonizing Particles (HIPs).
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OW Ao we produce them in LHC 7

- Two pair production mechanism are used to look for HIPs at LHC in proton-proton collisions:

- Drell-Yan - Photon-fusion
Y m
' " \\/
R A
q m /f(r\
Y m

Fig: Feynman diagram for photon-mediated Drell-Yan (left) and Photon-Fusion (right) monopole pair production

- Charges - 1gp and 2gp monopoles, HECOs, |z| =20 - 100.

- Masses - 200, 500, 1000, 1500, 2000, 2500, 3000 and 4000 GeV.

- We consider these charges/masses for our Run 2 analysis with p-p collisions at 13 TeV - 138 tb

- The dedicated HIP trigger (HLT _gO_hiptrt L1IEM22VHI) uses a region of interest from the EM calorimeter

at level T and counts the low and high threshold TRT hits.
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ATLAS detector at
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Fig:overall view of ATLAS detector

- Multipurpose detector to search for
- Comprises Inner tracking detector (
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Fig: Inner detector geometry

(EM) and hadronic calorimeters and a muon spectrometer.
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Fig: Layer structure of channels for the EM Calorimeter.

ohysics within and beyond the Standard Model (SM).
D) surrounded by solenoid of 2T magnetic field, electromagnetic

- HIPs exploit their signature in Transition Radiation Tracker (TRT) in ID and EM calorimeter.
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° Signal Signature

- Energy loss of HIPs is described by Bethe-Bloch equation:

JE 71 2m.c2B2?
= 2KZ " 1n mCPY A2)
dx A p? I

- Energylossx (z)?2 - (4700 x more ionising than proton).

- High ionisation produces many large energy deposits in TRT region
(low & high threshold hits).

- Large and narrow energy deposition in LAr EM calorimeter (too
heavy to induce a shower like electron & photon.)

. HIPs also kick off lots of electrons from inner atomic orbitals, (o-rays)
which further ionise the detector material to produce more HT hits.

- Two signal/background discrimination variables:

, _ . Fig: Event display for charge 1gD and mass 1000 GeV
- w (calorimeter energy dispersion.) monopole in ATLAS

. fur (fraction of high-threshold (HT) hits.)
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Signal Selection Variables

‘W’ - measures the lateral energy
dispersion of EM cluster candidate.
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Dlscrlmmatmg Varlables
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. Two possible sources of rare backgrounds:

fHT

- High energy electrons and jets.
- difficult to simulate a statistically signiticant MC sample.

- Data-driven background estimation through ABCD
Mmethod:

NEP = N L
A CND

=015+ 0.04 (stat) £ 0.05 (sys)
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Results and Interpretation

- No excess of events over SM backgrounds in signal region.

- Imposes 95% CL upper cross-section limits on both Drell-Yan and Photon-fusion production.

- We have set highest-to-date mass limits on 1gD and 2gD monopoles.

- QOur results for 1gp and 2gp are competitive with the MoEDAL experiment which is dedicated

for monopole searches.
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Overview of

- We are aiming for combined analysis with Run 2

and Run 3 data.

- Recently, a search for magne

oroduction in Run 3

RUN 2+

(https://arxiv.org/abs/240811035)

- To extend our analysis we hope to |
(particle with both magnetic and elect

‘hank you
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ultra-peripheral Heavy ion
collisions with ATLAS detector has been published.
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Back up



ATLAS
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SYSTEMATIC UNCERTAINTIES

Extrapolation Comparison with fully simulated
MC samples (1%)

Detector Geometry dependence on the square of

the charge from the ionization stopping power
(9%)

Correction to Birks' Law overestimates the
recombination effects at high dE/dx (8%)

Delta ray production theoretical uncertainties of
about 3% (2%)

Luminosity ATLAS standard value (0.83%)

Background estimate Non-uniformity of mean
transfer factor (30%)

TRT Occupancy mis-modelling affects the fraction of
TRTHT hits (2%)

Pileup variations of the nominal pileup distribution
within its uncertainty (2%)

Slow-moving HIPs (B < 0.37) trigger efficiency loss is

determined by rejecting the slow-moving HIPs at
truth level (2%)
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Run 2 Methodology and HL

 Luminosity for Run 2 with p-p collisions at 13 TeV - 138 b

- Dedicated HIP Trigger : HLT _gO _hiptrt LTEM22VHI. -
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Dedicated Trigger

r‘egion of interest from the EM calorimeter at level 1 and counts the low

‘esholc

TRT hits in tr

e region.

- ABCD method is used to estimate the backgrounds (explained in coming slides).
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