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Two topics:

Main topic: Inference of 3N couplings

Towards the end: uncertainty quantification for many-body perturbation theory
(feedback appreciated, talk to me over coffee?)

2



Chiral effective field theory and nuclear forces

Low-energy constants (LECs) need to be
inferred from data:

• Nucleon-nucleon (NN) LECs fit to
NN scattering data

• 3N LECs fit to properties of light
nuclei (e.g. triton, helium)

• πN (pion-nucleon) LECs fit to πN
scattering data

• πN LECs can (in principle) also be
fit to neutron-star (NS) data

πN

3N

Figure adapted from Entem et al., Phys.
Rev. C 96 (2017).
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Preprint: arXiv:2410.00247

First time inferring χEFT LECs from
non-microscopic data

We keep things relatively simple for now:

• no EFT truncation errors included

• N2LO

• ∆-less EFT
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Neutron star observatories

Neutron Star Interior Composition
Explorer (NICER), an X-ray telescope
for neutron star mass and radius

NICER aboard the ISS. Image: NASA

Laser Interferometer Gravitational-Wave
Observatory (LIGO)

LIGO, Hanford
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Bayesian inference

χEFT calculations of neutron matter depend on πN LECs c1, c3

−→ In principle, neutron-star observables can constrain c1, c3

From LECs to NS observables:

1 Input LECs into χEFT

2 Compute neutron-matter equation of state (EOS) using MBPT

3 Solve Tolman-Oppenheimer-Volkoff (TOV) and quadrupolar tidal
perturbation equations

4 Output: neutron-star masses and tidal deformabilities

With Bayesian inference, we can go from neutron-star data to LECs

Problem: huge computational cost: O(102) CPU-h for MBPT(3)
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Solution: emulators, allow us to calculate O(108) samples

Emulators for the EOS (energy per particle): parametric matrix models (PMM)1

Emulators for NS observables: neural networks2

Very good accuracy in
both cases (< 0.05% on
average)

1Cook et al., arXiv:2401.11694 (2024), Somasundaram et al., arXiv:2404.11566 (2024).
2Reed et al., arXiv:2405.20558 (2024)

7



PMM emulators for the EOS

PMM combines ideas from eigenvector continuation with machine learning:

M = M0 + c1M1 + c3M3 (1)

• M0: diagonal 2× 2 matrix

• M1 and M3: symmetric 2× 2 matrices

• In total, 8 elements are optimized to reproduce the behavior of MBPT

• Lowest eigenvalue of M is the (neutron matter) energy per particle

The emulators are trained on 30 EOS curves and validated with 70 curves
computed using 3rd-order MBPT3

Average emulator error: 15 keV (significantly less than the uncertainty of MBPT
itself)

3Drischler et al., Phys. Rev. Lett. 122 (2019); Keller et al., Phys. Rev. Lett. 130 (2023); Alp, Dietz, et al. (in
preparation)
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Neural network emulators for computing NS observables

We use standard neural network techniques

1 draw 200,000 samples of the LECs

2 compute EOS using PMM emulators

3 solve TOV/tidal deformability equations with high-fidelity solver

4 use 100,000 samples to train a neural network; 100,000 samples for validation

5 output: masses, tidal deformabilities

9



EOS modeling

χEFT may break down somewhere around ∼ 2nsat

Necessary to model the high-density EOS somehow

We use three models for the EOS:

• “2-parameter”: χEFT results extended to 10nsat

• “5-” and “7-parameter”: speed-of-sound parametrization above 2nsat

• Parameters are speed of sound (squared) on two different grids adove 2nsat

Use a metamodel4 to provide smooth interpolation of EOS and extrapolation to
matter in beta equilibrium

4Margueron et al., Phys. Rev. C 97 (2018)
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Input data: multimessenger observations

We use gravitational wave data: GW170817, Abbott et al., PRL 119 (2017)

And three NICER pulsars (mass-radius):

• PSR J0740, Salmi et al., ApJ 941 (2022)

• PSR J0437, Choudhury et al., ApJ Lett. 971 (2024)

• PSR J0030, Riley et al., ApJ Lett. 887 (2019), Vinciguerra et al., Astrophys.
J. 961 (2024)

Three different results for J0030 are available, we have compared them
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LEC posteriors using currently available data
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With updated NICER data
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Can we improve this with more and better GW data?

Next, use simulated next-generation GW data from Einstein Telescope5 and
Cosmic Explorer6, ∼ 1 year of observation

• Select 20 highest-SNR events,
perform Bayesian inference

• c3 converges quickly with number of
observed events

• Final constraints almost comparable
with πN scattering constraints

• Must marginalize over high-density
parameters; 2-parameter model has
large systematic uncertainty
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5Punturo et al., Class. Quant. Grav. 27 (2010)
6Reitze et al., Bull. Am. Astron. Soc. 51, (2019)
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What if χEFT breaks down earlier than 2nsat?

Before we used χEFT up to 2nsat

If we instead trust χEFT only to
1.5nsat then constraints on c3
become much weaker

Demonstrates the importance of
learning the breakdown scale

Distributions appear to
converge to the same value
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Truncation errors for MBPT

Short different topic:

Uncertainty quantification for MBPT calculations of, in this case, finite nuclei

(Preliminary)
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Inferring hyperparameters for MBPT truncation errors

BUQEYE model for EFT truncation
errora:

y = yref

ν∑
i=0

ciQ
i, δy = yref

∞∑
i=ν+1

ciQ
i

MBPT truncation error:

y = yref

k∑
i=0

γiR
i, δy = yref

∞∑
i=k+1

γiR
i

We infer pr(R, γ̄2) from order-by-order
differences similar to how pr(Q, c̄2) was
inferred in Wesolowski et al., Phys. Rev.
C 104 (2021)

aFurnstahl et al., Phys. Rev. C 92 (2015)
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How well does our error model work?
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Summary

• We have developed a framework to infer 3N couplings from NS observations

• Current and future data can provide constraints on c3, but not c1

• Provides constraints complementary to πN scattering, enables nontrivial
consistency checks for χEFT

• Work-in-progress: statistically rigorous quantification of MBPT method errors
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Outlook

• investigate EFT breakdown scale for EOS calculations

• repeat investigation with ∆-full χEFT and/or N3LO

• compare different many-body methods

• Long-term: use actual new multimessenger data to infer c3

• Validation of MBPT UQ model, better handling of correlated errors,
application to nuclear matter

isak.svensson@tu-darmstadt.de

Thank you to my collaborators:

3N inference: Rahul Somasundaram, Soumi De, Andrew E. Deneris, Yannick
Dietz, Philippe Landry, Achim Schwenk, Ingo Tews

MBPT UQ: Alex Tichai, Kai Hebeler, Achim Schwenk
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Extra slides
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With updated NICER data
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