

Ab initio nuclear corrections to muonic atoms Extracting nuclear radii from precision spectroscopy

Collaborators: Petr Navratil, Michael Gennari

Mehdi Drissi TRIUMF - Theory department

PAINT 2025 Vancouver - 25th of February 2025

Muonic atoms and charge radii

Observing muonic atoms with X-rays

Observing muonic atoms with X-rays

Muonic atom achievements

- Precise spectroscopy of almost all stable elements
- Charge radii extraction ⇒ highest absolute accuracy
- Combined with isotope-shift \Rightarrow radii for unstable nuclei
- → Higher sensitivity due to higher overlap $\sim \left(\frac{m_{\mu}}{m_e}\right)^3 \sim 10^7$

Observing muonic atoms with X-rays

Muonic atom achievements

- Precise spectroscopy of almost all stable elements
- Charge radii extraction ⇒ highest absolute accuracy
- Combined with isotope-shift \Rightarrow radii for unstable nuclei
- → Higher sensitivity due to higher overlap $\sim \left(\frac{m_{\mu}}{m_{e}}\right)^{3} \sim 10^{7}$

Observing characteristic X-rays

Practical limitations

- × <u>In general</u>: limitations are very experiment dependent
- × Never with a perfect energy resolution
- Many experimental challenges !

QUARTET collaboration

Improving energy resolution

- Quantum sensor detector to reach low-Z nuclei
- **On-going work at PSI with** ⁶Li / ⁷Li target

[Unger et al. J. Low Temp. Phys. (2024)]

QUARTET collaboration

Improving energy resolution

- Quantum sensor detector to reach low-Z nuclei
- **On-going work at PSI with** ⁶Li / ⁷Li target

[Unger et al. J. Low Temp. Phys. (2024)]

QUARTET collaboration

Improving energy resolution

- Quantum sensor detector to reach low-Z nuclei 0
- **On-going work at PSI with** ⁶Li / ⁷Li target 0

[Antognini et al, arXiv:2210.16929] NuPECC Long Range Plan 2024

[Unger et al. J. Low Temp. Phys. (2024)]

QUARTET collaboration

Improving energy resolution

- Quantum sensor detector to reach low-Z nuclei
- **On-going work at PSI with** ⁶Li / ⁷Li target 0

Theoretical challenge: reach 10 meV uncertainty!

[Unger et al. J. Low Temp. Phys. (2024)]

QUARTET collaboration

Improving energy resolution

- Quantum sensor detector to reach low-Z nuclei
- **On-going work at PSI with** ⁶Li / ⁷Li target 0

Theoretical challenge: reach 10 meV uncertainty! **Nuclear physics:** μ -atom reference \Rightarrow Isotopic chain

[Unger et al. J. Low Temp. Phys. (2024)]

QUARTET collaboration

Improving energy resolution

- Quantum sensor detector to reach low-Z nuclei
- **On-going work at PSI with** ⁶Li / ⁷Li target 0

[Antognini et al, arXiv:2210.16929] NuPECC Long Range Plan 2024

Theoretical challenge: reach 10 meV uncertainty! **Nuclear physics:** μ -atom reference \Rightarrow Isotopic chain **On-going puzzles:** ~ 3.5σ for $^{3-4}$ He isotope shift

Converting experimental data

- What to do once precise value of energy levels is known? • Can be used to **test fundamental constants** like R_{∞}, α, m_e • Can be used to extract **nuclear structure information** like r_c • Can be used to test validity of **many-body calculations** • Example in practice: Lamb shift in meV $2S_{1/2} - 2P_{1/2}$ (r_x in fm) [Antognini et al, SciPost (2021)] $\Delta E(\mu H) = 206.0336(15) - 5.2275(10) \times r_p^2 + 0.0332(20)$ $\Delta E(\mu D) = 228.7767(10) - 6.1103(3) \times r_D^2 + 1.7449(200)$ $\Delta E(\mu^{4}\text{He}) = 1668.489(14) - 106.220(8) \times r_{\alpha}^{2} + 9.201(291)$

Converting experimental data

What to do once precise value of energy levels is known ?
Can be used to test fundamental constants like R_∞, α, m_e
Can be used to extract nuclear structure information like r_c
Can be used to test validity of many-body calculations
Example in practice: Lamb shift in meV 2S_{1/2} - 2P_{1/2} (r_x in fm) [Antognini et al, SciPost (2021)]
ΔE(μH) = 206.0336(15) - 5.2275(10) × r_p² + 0.0332(20) ΔE(μD) = 228.7767(10) - 6.1103(3) × r_D² + 1.7449(200) ΔE(μ⁴He) = 1668.489(14) - 106.220(8) × r_α² + 9.201(291)

General many-body problem

- Main degrees of freedom
 - Nucleons $\rightarrow N$; photon $\rightarrow A$; Muon $\rightarrow \psi_{\mu}$

Converting experimental data

What to do once precise value of energy levels is known ?
Can be used to test fundamental constants like R_∞, α, m_e
Can be used to extract nuclear structure information like r_c
Can be used to test validity of many-body calculations
Example in practice: Lamb shift in meV 2S_{1/2} - 2P_{1/2} (r_x in fm) [Antognini et al, SciPost (2021)]
ΔE(μH) = 206.0336(15) - 5.2275(10) × r_p² + 0.0332(20) ΔE(μD) = 228.7767(10) - 6.1103(3) × r_D² + 1.7449(200) ΔE(μ⁴He) = 1668.489(14) - 106.220(8) × r_a² + 9.201(291)

General many-body problem

- Main degrees of freedom
 - Nucleons $\rightarrow N$; photon $\rightarrow A$; Muon $\rightarrow \psi_{\mu}$

Hamiltonian

[Friar, Rosen, Annals of Physics (1974)]

• For simplicity assume non-relativistic nucleons of equal mass

$$H = H_{Nucl} + e \int d^3x J_{\mu}(x) A^{\mu}(x)$$
$$+ \frac{e^2}{2m} \int d^3x d^3y f_{SG}(x, y) \vec{A}(x) \cdot \vec{A}(y)$$
$$+ H_{QED}$$

Converting experimental data

 What to do once precise value of energy levels is known ?
 Can be used to test fundamental constants like R_∞, α, m_e
 Can be used to extract nuclear structure information like r_c
 Can be used to test validity of many-body calculations
 Example in practice: Lamb shift in meV 2S_{1/2} - 2P_{1/2} (r_x in fm) [Antognini et al, SciPost (2021)]
 ΔE(μH) = 206.0336(15) - 5.2275(10) × r_p² + 0.0332(20) ΔE(μD) = 228.7767(10) - 6.1103(3) × r_D² + 1.7449(200) ΔE(μ⁴He) = 1668.489(14) - 106.220(8) × r_a² + 9.201(291)

General many-body problem

- Main degrees of freedom
 - Nucleons $\rightarrow N$; photon $\rightarrow A$; Muon $\rightarrow \psi_{\mu}$

Hamiltonian

Friar, Rosen, Annals of Physics (1974)]
 For simplicity assume non-relativistic nucleons of equal mass

$$\begin{split} H &= H_{Nucl} + e \int \mathrm{d}^3 x \ J_\mu(x) A^\mu(x) \\ &+ \frac{e^2}{2m} \int \mathrm{d}^3 x \mathrm{d}^3 y \ f_{SG}(x,y) \ \vec{A}(x) . \vec{A}(y) \\ &+ H_{QED} \end{split}$$

• General approach to compute bound state of H

× In principle use Bethe-Salpeter ⇒ bound states ≡ G_n poles
 ✓ In practice use effective external potential
 Corrections up to (Zα)⁵ to match exp accuracy

Converting experimental data

What to do once precise value of energy levels is known ?
Can be used to test fundamental constants like R_∞, α, m_e
Can be used to extract nuclear structure information like r_c
Can be used to test validity of many-body calculations
Example in practice: Lamb shift in meV 2S_{1/2} - 2P_{1/2} (r_x in fm) [Antognini et al, SciPost (2021)]
ΔE(μH) = 206.0336(15) - 5.2275(10) × r_p² + 0.0332(20) ΔE(μD) = 228.7767(10) - 6.1103(3) × r_D² + 1.7449(200) ΔE(μ⁴He) = 1668.489(14) - 106.220(8) × r_a² + 9.201(291)

Radius extraction master formula

$$\delta_{\rm LS} = \delta_{\rm QED} + \mathscr{C} r_c^2 + \delta_{\rm NS}$$

General many-body problem

- Main degrees of freedom
 - Nucleons $\rightarrow N$; photon $\rightarrow A$; Muon $\rightarrow \psi_{\mu}$

Hamiltonian

Friar, Rosen, Annals of Physics (1974)]
 For simplicity assume non-relativistic nucleons of equal mass

$$\begin{split} H &= H_{Nucl} + e \int \mathrm{d}^3 x \ J_\mu(x) A^\mu(x) \\ &+ \frac{e^2}{2m} \int \mathrm{d}^3 x \mathrm{d}^3 y \ f_{SG}(x,y) \ \vec{A}(x) . \vec{A}(y) \\ &+ H_{QED} \end{split}$$

• General approach to compute bound state of H

★ In principle use Bethe-Salpeter ⇒ bound states ≡ G_n poles
✓ In practice use effective external potential

• Corrections up to $(Z\alpha)^5$ to match exp accuracy

Converting experimental data

General many-body problem

- Main degrees of freedom
 - Nucleons $\rightarrow N$; photon $\rightarrow A$; Muon $\rightarrow \psi_{\mu}$

Hamiltonian

Friar, Rosen, Annals of Physics (1974)]
 For simplicity assume non-relativistic nucleons of equal mass

$$H = H_{Nucl} + e \int d^3x J_{\mu}(x) A^{\mu}(x)$$
$$+ \frac{e^2}{2m} \int d^3x d^3y f_{SG}(x, y) \vec{A}(x) \cdot \vec{A}(y)$$
$$+ H_{QED}$$

 \odot General approach to compute bound state of H

x In principle use Bethe-Salpeter \Rightarrow bound states $\equiv G_n$ poles

✓ In practice use effective external potential

• Corrections up to $(Z\alpha)^5$ to match exp accuracy

Bound muon within potential

Sero-order: external Coulomb potential

• Solve exactly for
$$H_0 = \frac{\vec{p}^2}{2m_r} - \frac{Z\alpha}{r}$$

• $E_{nl} = -\frac{(Z\alpha)^2 m_r}{2n^2} \equiv E^{(0)}$

Bound muon within potential

<u>Zero-order: external Coulomb potential</u>

Solve exactly for
$$H_0 = \frac{\vec{p}^2}{2m_r} - \frac{Z\alpha}{r}$$

 $E_{nl} = -\frac{(Z\alpha)^2 m_r}{2n^2} \equiv E^{(0)}$

What effective potential to apply on muon ?

- Effective potential as perturbation away from Coulomb
- Defined to **match QED** scattering at a given order
- Bound-state ⇒ Distorted Wave Born approximation $E_{nl} = E^{(0)} + \langle V^{(1)} \rangle + \langle V^{(2)} \rangle + \langle V^{(1)} \frac{1}{(E_0 - H_0)'} V^{(1)} \rangle + \dots$

Bound muon within potential

<u>Zero-order: external Coulomb potential</u>

Solve exactly for
$$H_0 = \frac{\vec{p}^2}{2m_r} - \frac{Z\alpha}{r}$$

 $E_{nl} = -\frac{(Z\alpha)^2 m_r}{2n^2} \equiv E^{(0)}$

• What effective potential to apply on muon ?

- Effective potential as perturbation away from Coulomb
- Defined to match QED scattering at a given order
- Bound-state ⇒ Distorted Wave Born approximation $E_{nl} = E^{(0)} + \langle V^{(1)} \rangle + \langle V^{(2)} \rangle + \langle V^{(1)} \frac{1}{(E_0 - H_0)'} V^{(1)} \rangle + \dots$
- Main type of QED contributions
 - Electron vacuum polarization: $a_{\mu} \sim \lambda_e \Rightarrow$ main one!
 - Finite nuclear mass \Rightarrow recoil and relativistic corrections
 - Finite nuclear size contributions \Rightarrow Main one $\propto r_c^2$

Bound muon within potential

<u>Zero-order: external Coulomb potential</u>

Solve exactly for
$$H_0 = \frac{\vec{p}^2}{2m_r} - \frac{Z\alpha}{r}$$

 $E_{nl} = -\frac{(Z\alpha)^2 m_r}{2n^2} \equiv E^{(0)}$

• What effective potential to apply on muon ?

- Effective potential as perturbation away from Coulomb
- Defined to **match QED** scattering at a given order
- Bound-state ⇒ Distorted Wave Born approximation $E_{nl} = E^{(0)} + \langle V^{(1)} \rangle + \langle V^{(2)} \rangle + \langle V^{(1)} \frac{1}{(E_0 - H_0)'} V^{(1)} \rangle + \dots$
- Main type of QED contributions
 - Electron vacuum polarization: $a_{\mu} \sim \lambda_e \Rightarrow$ main one!
 - Finite nuclear mass \Rightarrow recoil and relativistic corrections
 - Finite nuclear size contributions \Rightarrow Main one $\propto r_c^2$

Example: electron vacuum polarization corrections

 $\Rightarrow \delta_{\text{OED}}$ term in δ_{LS}

Bound muon within potential

<u>Zero-order: external Coulomb potential</u>

Solve exactly for
$$H_0 = \frac{\vec{p}^2}{2m_r} - \frac{Z\alpha}{r}$$

 $E_{nl} = -\frac{(Z\alpha)^2 m_r}{2n^2} \equiv E^{(0)}$

What effective potential to apply on muon ?

- Effective potential as perturbation away from Coulomb
- Defined to **match QED** scattering at a given order
- Bound-state ⇒ Distorted Wave Born approximation $E_{nl} = E^{(0)} + \langle V^{(1)} \rangle + \langle V^{(2)} \rangle + \langle V^{(1)} \frac{1}{(E_0 - H_0)'} V^{(1)} \rangle + \dots$
- Main type of QED contributions
 - Electron vacuum polarization: $a_{\mu} \sim \lambda_e \Rightarrow$ main one!
 - Finite nuclear mass \Rightarrow recoil and relativistic corrections
 - Finite nuclear size contributions \Rightarrow Main one $\propto r_c^2$

Example: electron vacuum polarization corrections

Section	Order	Correction	μH	μD	μ^{3} He ⁺	$\mu^4 { m He^+}$
III.A	$\alpha(Z\alpha)^2$	$eVP^{(1)}$	205.007 38	227.63470	1641.8862	1665.773 1
III.A	$\alpha^2 (Z\alpha)^2$	$eVP^{(2)}$	1.658 85	1.838 04	13.0843	13.2769
III.A	$\alpha^3 (Z\alpha)^2$	$eVP^{(3)}$	0.007 52	0.008 42(7)	0.073 0(30)	0.074 0(3
III.B	$(Z, Z^2, Z^3)\alpha^5$	Light-by-light eVP	-0.00089(2)	-0.00096(2)	-0.0134(6)	-0.0136(0
III.C	$(Z\alpha)^4$	Recoil	0.057 47	0.067 22	0.1265	0.295 2
III.D	$\alpha(Z\alpha)^4$	Relativistic with eVP ⁽¹⁾	0.018 76	0.021 78	0.509 3	0.5211
III.E	$\alpha^2 (Z\alpha)^4$	Relativistic with eVP ⁽²⁾	0.000 17	0.000 20	0.005 6	0.005 7
III.F	$\alpha(Z\alpha)^4$	$\mu SE^{(1)} + \mu VP^{(1)}$, LO	-0.663 45	-0.769 43	-10.6525	-10.9260
III.G	$\alpha(Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$, NLO	-0.00443	-0.005 18	-0.1749	-0.1797
III.H	$\alpha^2 (Z\alpha)^4$	$\mu VP^{(1)}$ with $eVP^{(1)}$	0.000 13	0.000 15	0.003 8	0.003 9
III.I	$\alpha^2(Z\alpha)^4$	μ SE ⁽¹⁾ with eVP ⁽¹⁾	-0.00254	-0.003 06	-0.0627	-0.0646
III.J	$(Z\alpha)^{5}$	Recoil	-0.04497	-0.026 60	-0.5581	-0.4330
III.K	$\alpha(Z\alpha)^5$	Recoil with eVP ⁽¹⁾	0.000 14(14)	0.000 09(9)	0.004 9(49)	0.003 9(3
III.L	$Z^{2}\alpha(Z\alpha)^{4}$	$nSE^{(1)}$	-0.009 92	-0.003 10	-0.0840	-0.0505
III.M	$\alpha^2 (Z\alpha)^4$	$\mu F_1^{(2)}, \ \mu F_2^{(2)}, \ \mu VP^{(2)}$	-0.001 58	-0.001 84	-0.0311	-0.0319
III.N	$(Z\alpha)^6$	Pure recoil	0.000 09	0.000 04	0.001 9	0.0014
III.O	$\alpha(Z\alpha)^5$	Radiative recoil	0.000 22	0.000 13	0.0029	0.0023
III.P	$\alpha (Z\alpha)^4$	hVP	0.011 36(27)	0.013 28(32)	0.224 1(53)	0.230 3(
III.Q	$\alpha^2 (Z \alpha)^4$	hVP with eVP ⁽¹⁾	0.000 09	0.000 10	0.002 6(1)	0.002 7(1

[Pachucki et al. Review of Modern Physics (2024)]

30) 6)

39)

Radius extraction master formula

$$\delta_{\rm LS} = \delta_{\rm QED} + \mathscr{C} r_c^2 + \delta_{\rm NS}$$

Radius extraction master formula

$$\delta_{\rm LS} = \delta_{\rm QED} + \mathscr{C} r_c^2 + \delta_{\rm NS}$$

NS correction: $\delta_{NS} = \delta_{TPE} + \delta_{3PE} + \dots$

Radius extraction master formula

$$\delta_{\rm LS} = \delta_{\rm QED} + \mathscr{C} r_c^2 + \delta_{\rm NS}$$

NS correction:
$$\delta_{NS} = \delta_{TPE} + \delta_{3PE} + \dots$$

Two photon exchanges contributions

$$\Delta E_{2S} = -\frac{(m-m)}{m_r} |\phi_{2S}(0)|^2 \operatorname{Im} \int \frac{d^2 q}{(2\pi)^4} D^{\mu\rho}(q) D^{\nu\tau}(-q) t_{\mu\nu}(q,k) T_{\rho\tau}(q,k)$$

[Bernabeu et al, Nuclear Physics A (1974)] [Rosenfelder Nuclear Physics A (1983)]

Radius extraction master formula

$$\delta_{\rm LS} = \delta_{\rm QED} + \mathscr{C} r_c^2 + \delta_{\rm NS}$$

NS correction:
$$\delta_{NS} = \delta_{TPE} + \delta_{3PE} + \dots$$

Two photon exchanges contributions

$$\Delta E_{2S} = -\frac{(m-m)}{m_r} |\phi_{2S}(0)|^2 \operatorname{Im} \int \frac{d^2 q}{(2\pi)^4} D^{\mu\rho}(q) D^{\nu\tau}(-q) t_{\mu\nu}(q,k) T_{\rho\tau}(q,k)$$

[Bernabeu et al, Nuclear Physics A (1974)] [Rosenfelder Nuclear Physics A (1983)]

Hadronic tensor [Friar, Annals of Physics (1976)] 8

$$T_{\mu\nu}(q) = \delta_{\mu\nu} \left\langle \Psi \left| \int \mathrm{d}^3 x e^{iq.x} f_{SG}(x,0) \right| \Psi \right\rangle + \sum_{N \neq 0} \left[\frac{\left\langle \Psi \right| J_{\mu}(0) \left| N\vec{q} \right\rangle \left\langle N\vec{q} \right| J_{\nu}(0) \left| \Psi \right\rangle}{E_0 - E_N + q_0 + i\epsilon} + \frac{\left\langle \Psi \right| J_{\nu}(0) \left| N - \vec{q} \right\rangle \left\langle N - \vec{q} \right| J_{\mu}(0) \right|}{E_0 - E_N - q_0 + i\epsilon} \right]$$

$$(q, -q)$$

Radius extraction master formula

$$\delta_{\rm LS} = \delta_{\rm QED} + \mathscr{C} r_c^2 + \delta_{\rm NS}$$

NS correction:
$$\delta_{NS} = \delta_{TPE} + \delta_{3PE} + \dots$$

Two photon exchanges contributions

$$\Delta E_{2S} = -\frac{(4\pi Z\alpha)}{m_r} |\phi_{2S}(0)|^2 \operatorname{Im} \int \frac{\mathrm{d}^4 q}{(2\pi)^4} D^{\mu\rho}(q) D^{\nu\tau}(-q) t_{\mu\nu}(q,k) T_{\rho\tau}(q,-q)$$

[Bernabeu et al, Nuclear Physics A (1974)] [Rosenfelder Nuclear Physics A (1983)]

Hadronic tensor [Friar, Annals of Physics (1976)] 8

$$T_{\mu\nu}(q) = \delta_{\mu\nu} \left\langle \Psi \left| \int \mathrm{d}^3 x e^{iq.x} f_{SG}(x,0) \right| \Psi \right\rangle + \sum_{N \neq 0} \left[\frac{\langle \Psi | J_{\mu}(0) | N\vec{q} \rangle \langle N\vec{q} | J_{\nu}(0) | \Psi \rangle}{E_0 - E_N + q_0 + i\epsilon} + \frac{\langle \Psi | J_{\nu}(0) | N - \vec{q} \rangle \langle N - \vec{q} | J_{\mu}(0) |}{E_0 - E_N - q_0 + i\epsilon} \right]$$

Nuclear polarizability [Hernandez et al. PRC (2019)]

• TPE decomposition:
$$\delta_{\text{TPE}} = (\delta_{\text{el}}^N + \delta_{\text{pol}}^N) + (\delta_{\text{el}}^A + \delta_{\text{pol}}^A)$$

Radius extraction master formula

$$\delta_{\rm LS} = \delta_{\rm QED} + \mathscr{C} r_c^2 + \delta_{\rm NS}$$

NS correction:
$$\delta_{NS} = \delta_{TPE} + \delta_{3PE} + \dots$$

Two photon exchanges contributions

$$\Delta E_{2S} = -\frac{(m-m)}{m_r} |\phi_{2S}(0)|^2 \operatorname{Im} \int \frac{\pi^2 q}{(2\pi)^4} D^{\mu\rho}(q) D^{\nu\tau}(-q) t_{\mu\nu}(q,k) T_{\rho\tau}(q,-q)$$

[Bernabeu et al, Nuclear Physics A (1974)] [Rosenfelder Nuclear Physics A (1983)]

Hadronic tensor [Friar, Annals of Physics (1976)] 8

$$T_{\mu\nu}(q) = \delta_{\mu\nu} \left\langle \Psi \left| \int \mathrm{d}^3 x e^{iq.x} f_{SG}(x,0) \right| \Psi \right\rangle + \sum_{N \neq 0} \left[\frac{\langle \Psi | J_{\mu}(0) | N\vec{q} \rangle \langle N\vec{q} | J_{\nu}(0) | \Psi \rangle}{E_0 - E_N + q_0 + i\epsilon} + \frac{\langle \Psi | J_{\nu}(0) | N - \vec{q} \rangle \langle N - \vec{q} | J_{\mu}(0) |}{E_0 - E_N - q_0 + i\epsilon} \right]$$

Nuclear polarizability [Hernandez et al. PRC (2019)]

- <u>TPE decomposition</u>: $\delta_{\text{TPE}} = (\delta_{\text{el}}^N + \delta_{\text{pol}}^N) + (\delta_{\text{el}}^A + \delta_{\text{pol}}^A)$
- <u>Multipole decomposition</u>: $\delta_{\text{pol}}^{A} = \Delta_{C} + \Delta_{T,E} + \Delta_{T,M}$ $\Rightarrow \Delta_{X} \equiv \int dq \int d\omega \ K_{X}(\omega,q) \ S_{X}(\omega,q)$

Radius extraction master formula

$$\delta_{\rm LS} = \delta_{\rm QED} + \mathscr{C} r_c^2 + \delta_{\rm NS}$$

NS correction:
$$\delta_{NS} = \delta_{TPE} + \delta_{3PE} + \dots$$

Two photon exchanges contributions

$$\Delta E_{2S} = -\frac{(m-m)}{m_r} |\phi_{2S}(0)|^2 \operatorname{Im} \int \frac{m^2}{(2\pi)^4} D^{\mu\rho}(q) D^{\nu\tau}(-q) t_{\mu\nu}(q,k) T_{\rho\tau}(q,-q)$$

[Bernabeu et al, Nuclear Physics A (1974)] [Rosenfelder Nuclear Physics A (1983)]

Hadronic tensor [Friar, Annals of Physics (1976)] 8

$$T_{\mu\nu}(q) = \delta_{\mu\nu} \left\langle \Psi \left| \int d^3x e^{iq.x} f_{SG}(x,0) \right| \Psi \right\rangle + \sum_{N \neq 0} \left[\frac{\left\langle \Psi \left| J_{\mu}(0) \right| N \vec{q} \right\rangle \left\langle N \vec{q} \right| J_{\nu}(0) \left| \Psi \right\rangle}{E_0 - E_N + q_0 + i\epsilon} + \frac{\left\langle \Psi \left| J_{\nu}(0) \right| N - \vec{q} \right\rangle \left\langle N - \vec{q} \right| J_{\mu}(0) \right|}{E_0 - E_N - q_0 + i\epsilon} \right]$$

Nuclear polarizability [Hernandez et al. PRC (2019)]

- <u>TPE decomposition</u>: $\delta_{\text{TPE}} = (\delta_{\text{el}}^N + \delta_{\text{pol}}^N) + (\delta_{\text{el}}^A + \delta_{\text{pol}}^A)$
- <u>Multipole decomposition</u>: $\delta_{\text{pol}}^A = \Delta_C + \Delta_{T,E} + \Delta_{T,M}$ $\Rightarrow \Delta_X \equiv \int dq \int d\omega \ K_X(\omega,q) \ S_X(\omega,q)$

Spectral functions:

 $\Rightarrow S_X(\omega, q) \equiv \sum_{J \ge 0} \sum_{N \ne 0} |\langle N | O_{X,J}(q) | \Psi \rangle|^2 \delta(E_N - E_0 - \omega)$

Ab initio nuclear corrections

Model used for nuclear currents

Electromagnetic current modelling

 General one-body current for point-like particles • Form factors given by the isovector dipole model

•
$$f_{SN}(q) = \left(1 + \frac{q^2}{M_V^2}\right)^{-2}$$
, $F_{1,2}^{(T)}(q) = F_{1,2}^{(T)}(0) f_{SN}(q)$

Model used for nuclear currents

Electromagnetic current modelling

• General one-body current for point-like particles • Form factors given by the isovector dipole model

•
$$f_{SN}(q) = \left(1 + \frac{q^2}{M_V^2}\right)^{-2}$$
, $F_{1,2}^{(T)}(q) = F_{1,2}^{(T)}(0) f_{SN}(q)$

Multipole decomposition of nuclear currents

[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

•
$$M_{JM_J;TM_T}(q) \equiv \int d^3x \mathbf{M}_J^{M_J}(qx) J_0(x)_{TM_T}$$

•
$$T_{JM_J;TM_T}^E(q) \equiv \int d^3x \left[\frac{1}{q} \nabla \times \vec{\mathbf{M}}_{JJ}^{M_J}(qx)\right] . \vec{J}(x)_{TM_T}$$

$$T^{M}_{JM_{J};TM_{T}}(q) \equiv \int d^{3}x \vec{\mathbf{M}}^{M_{J}}_{JJ}(qx) . \vec{J}(x)_{TM_{T}}$$

Truncation at J = 3

Model used for nuclear currents

Electromagnetic current modelling

• General one-body current for point-like particles • Form factors given by the isovector dipole model

•
$$f_{SN}(q) = \left(1 + \frac{q^2}{M_V^2}\right)^{-2}$$
, $F_{1,2}^{(T)}(q) = F_{1,2}^{(T)}(0) f_{SN}(q)$

Multipole decomposition of nuclear currents

[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

•
$$M_{JM_J;TM_T}(q) \equiv \int d^3x \mathbf{M}_J^{M_J}(qx) J_0(x)_{TM_T}$$

•
$$T_{JM_J;TM_T}^E(q) \equiv \int d^3x \left[\frac{1}{q} \nabla \times \vec{\mathbf{M}}_{JJ}^{M_J}(qx)\right] . \vec{J}(x)_{TM_T}$$

$$T^{M}_{JM_{J};TM_{T}}(q) \equiv \int d^{3}x \vec{\mathbf{M}}^{M_{J}}_{JJ}(qx) . \vec{J}(x)_{TM_{T}}$$

 \blacksquare Truncation at J = 3

Model used for nuclear many-body state

- Ab initio nuclear interaction [Entem et al. (2017)] [Somà et al. (2020)]
 - Two chiral interactions considered
 - N4LO-E7 and N3LO
 - **Estimate interaction uncertainty**

Model used for nuclear currents

Electromagnetic current modelling

• General one-body current for point-like particles • Form factors given by the isovector dipole model

•
$$f_{SN}(q) = \left(1 + \frac{q^2}{M_V^2}\right)^{-2}$$
, $F_{1,2}^{(T)}(q) = F_{1,2}^{(T)}(0) f_{SN}(q)$

Multipole decomposition of nuclear currents

[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

•
$$M_{JM_J;TM_T}(q) \equiv \int d^3x \mathbf{M}_J^{M_J}(qx) J_0(x)_{TM_T}$$

•
$$T_{JM_J;TM_T}^E(q) \equiv \int d^3x \left[\frac{1}{q} \nabla \times \vec{\mathbf{M}}_{JJ}^{M_J}(qx)\right] . \vec{J}(x)_{TM_T}$$

$$T^{M}_{JM_{J};TM_{T}}(q) \equiv \int d^{3}x \vec{\mathbf{M}}^{M_{J}}_{JJ}(qx) . \vec{J}(x)_{TM_{T}}$$

 \blacksquare Truncation at J = 3

Model used for nuclear many-body state

- Ab initio nuclear interaction [Entem et al. (2017)] [Somà et al. (2020)]
 - Two chiral interactions considered
 - N4LO-E7 and N3LO
 - **Estimate interaction uncertainty**

Model space

- Harmonic oscillator Slater determinant
- Vary many-body basis: (Ω, N_{max})
- **Estimate model space truncation uncertainty**

Nuclear physics modelling

Model used for nuclear currents

Electromagnetic current modelling

• General one-body current for point-like particles • Form factors given by the isovector dipole model

•
$$f_{SN}(q) = \left(1 + \frac{q^2}{M_V^2}\right)^{-2}$$
, $F_{1,2}^{(T)}(q) = F_{1,2}^{(T)}(0) f_{SN}(q)$

Multipole decomposition of nuclear currents

[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

•
$$M_{JM_J;TM_T}(q) \equiv \int d^3x \mathbf{M}_J^{M_J}(qx) J_0(x)_{TM_T}$$

•
$$T_{JM_J;TM_T}^E(q) \equiv \int d^3x \left[\frac{1}{q} \nabla \times \vec{\mathbf{M}}_{JJ}^{M_J}(qx)\right] . \vec{J}(x)_{TM_T}$$

$$T^{M}_{JM_{J};TM_{T}}(q) \equiv \int d^{3}x \vec{\mathbf{M}}^{M_{J}}_{JJ}(qx) . \vec{J}(x)_{TM_{T}}$$

 \rightarrow Truncation at J = 3

Model used for nuclear many-body state

- Ab initio nuclear interaction [Entem et al. (2017)] [Somà et al. (2020)]
 - Two chiral interactions considered
 - N4LO-E7 and N3LO
 - **Estimate interaction uncertainty**

Model space

- Harmonic oscillator Slater determinant
- Vary many-body basis: (Ω, N_{max})
- **Estimate model space truncation uncertainty**

Many-body approximation

- No-Core Shell Model
- More details in next section
- ➡ Negligible many-body approximation uncertainty

Anti-symmetrized products of many-body HO states

 $\alpha_1 \quad \beta_2$

 $\beta_2 \alpha_2 \beta_3$

Lanczos tridiagonalization algorithm [Lanczos (1950)]

- Initialization: normalized pivot $|\phi_1\rangle$
- <u>Recursion</u>: α_i , β_i and $|\phi_i\rangle$
 - $\circ \quad \beta_{i+1} | \phi_{i+1} \rangle = H | \phi_i \rangle \alpha_i | \phi_i \rangle \beta_i | \phi_{i-1} \rangle$
 - $\alpha_i = \langle \phi_i | H | \phi_i \rangle$ and β_{i+1} st $\langle \phi_{i+1} | \phi_{i+1} \rangle = 1$

• Output:

- Lanczos basis and coefficients $\{ |\phi_i\rangle, \alpha_i, \beta_i \}$ 0
- Lanczos basis \equiv orthonormal basis in Krylov space $\{ |\phi_1\rangle, H |\phi_1\rangle, ..., H^{N_L} |\phi_1\rangle \}$

Anti-symmetrized products of many-body HO states

 $\alpha_1 \beta_2$

 $\beta_2 \alpha_2 \beta_3$

Lanczos tridiagonalization algorithm [Lanczos (1950)]

- Initialization: normalized pivot $|\phi_1\rangle$
- <u>Recursion</u>: α_i , β_i and $|\phi_i\rangle$
 - $\circ \quad \beta_{i+1} | \phi_{i+1} \rangle = H | \phi_i \rangle \alpha_i | \phi_i \rangle \beta_i | \phi_{i-1} \rangle$
 - $\alpha_i = \langle \phi_i | H | \phi_i \rangle$ and β_{i+1} st $\langle \phi_{i+1} | \phi_{i+1} \rangle = 1$

• Output:

- Lanczos basis and coefficients $\{ |\phi_i\rangle, \alpha_i, \beta_i \}$ 0
- Lanczos basis \equiv orthonormal basis in Krylov space $\{ |\phi_1\rangle, H |\phi_1\rangle, ..., H^{N_L} |\phi_1\rangle \}$

Application to nuclear structure

- Efficient calculation of spectra
 - Selection rules sparsity ⇒ Fast matrix-vector multiplication
 - In practice: $N_L \sim 100 200$ is sufficient to converge low-lying states
 - Cost of diagonalization of the tridiagonal matrix is negligible

Anti-symmetrized products of many-body HO states

Lanczos tridiagonalization algorithm [Lanczos (1950)]

- Initialization: normalized pivot $|\phi_1
 angle$
- Recursion: α_i , β_i and $|\phi_i\rangle$
 - $\beta_{i+1} |\phi_{i+1}\rangle = H |\phi_i\rangle \alpha_i |\phi_i\rangle \beta_i |\phi_{i-1}\rangle$
 - $\alpha_i = \langle \phi_i | H | \phi_i \rangle$ and β_{i+1} st $\langle \phi_{i+1} | \phi_{i+1} \rangle = 1$

• <u>Output</u>:

- Lanczos basis and coefficients $\{ | \phi_i \rangle, \alpha_i, \beta_i \}$
- Lanczos basis \equiv orthonormal basis in Krylov space $\{ |\phi_1\rangle, H |\phi_1\rangle, ..., H^{N_L} |\phi_1\rangle \}$

Application to nuclear structure

- Efficient calculation of spectra
 - Selection rules sparsity ⇒ Fast matrix-vector multiplication
 - In practice: $N_L \sim 100 200$ is sufficient to converge low-lying states
 - Cost of diagonalization of the tridiagonal matrix is negligible

Anti-symmetrized products of many-body HO states

Application to ⁷Li

Parameters of many-body calculation

•
$$N_L = 200$$
 for $N_{\rm max} = 1$ to 9

• <u>Results</u> • Ground-state of ⁷Li $|\Psi\rangle \Rightarrow$ **Starting point for** δ_{pol}^{A}

The Lanczos strength algorithm

Computing strength functions

- We need to compute for each eigenstate and operator:
- Eigenvalues: E_N Overlaps: $|\langle N|O|\Psi \rangle|^2$

Too expansive to converge all of them !!

- Lanczos strength algorithm
 - Variant of Lanczos: ensure convergence of **sum rules** 0

The Lanczos strength algorithm

Computing strength functions

- We need to compute for each eigenstate and operator:

 - Eigenvalues: E_N Overlaps: $|\langle N|O|\Psi \rangle|^2$ 0

Too expansive to converge all of them !!

- Lanczos strength algorithm
 - Variant of Lanczos: ensure convergence of **sum rules** 0

Only low-lying states converged in general 0

- Recover exactly $\int d\omega \ \omega^n \ S_O(\omega)$ for any $n \le 2N_L$ Fast convergence of $\int d\omega \ f(\omega)S_O(\omega)$ (if $f \sim P_{100}(\omega)$)

The Lanczos strength algorithm

Computing strength functions

- We need to compute for each eigenstate and operator:
- Eigenvalues: E_N Overlaps: $|\langle N|O|\Psi \rangle|^2$

Too expansive to converge all of them !!

- Lanczos strength algorithm
 - Variant of Lanczos: ensure convergence of **sum rules**

Main idea of the algorithm

For each operator O

• Compute $\frac{O|\Psi\rangle}{\sqrt{\langle \Psi|O^{\dagger}O|\Psi\rangle}} \Rightarrow \text{Pivot } |\phi_1'\rangle \text{ for } 2^{\text{nd}} \text{ Lanczos}$

- Extract strength from orthonormality of Lanczos basis
 - $|\langle \Psi | O | N \rangle|^2 = \langle \Psi | O^{\dagger}O | \Psi \rangle \times |\langle \phi_1' | N \rangle|^2$

Numerical calculations

• $q_{\rm max} = 700$ MeV and $\Delta q = 10$ MeV

• 10 different operators for $J_{\text{max}} = 3$

700 NCSM calculations at $N_{\text{max}} = 7$

Numerical calculations

• $q_{\rm max} = 700$ MeV and $\Delta q = 10$ MeV

• 10 different operators for $J_{\text{max}} = 3$

700 NCSM calculations at $N_{\text{max}} = 7$

• $q_{\rm max} = 700$ MeV and $\Delta q = 10$ MeV

• 10 different operators for $J_{\text{max}} = 3$

700 NCSM calculations at $N_{\text{max}} = 7$

Observations

- Contribution repartitions
 - Well-known **dipole** dominance
 - Charge contributions are dominant

$$T_J^E(q)$$

• $q_{\rm max} = 700$ MeV and $\Delta q = 10$ MeV

• 10 different operators for $J_{\text{max}} = 3$

700 NCSM calculations at $N_{\text{max}} = 7$

Observations

- Contribution repartitions
 - Well-known **dipole** dominance
 - Charge contributions are dominant
- Negligible contributions
 - TM is negligible for any J
 - TE is relevant only for J = 1
 - Only half the operators are relevant

 $T_J^E(q)$

Checking convergence in $J_{\rm max}$

Results

Here shown for N_{max} = 7 and N4LO-E7
 All other cases are similar
 Fast exponential convergence

Checking convergence in J_{max}

Results

• Here shown for $N_{\text{max}} = 7$ and N4LO-E7 • All other cases are similar **Fast exponential convergence**

$$\epsilon_{J_{\text{max}}} \lesssim 0.1 \text{ meV}$$

Multipole truncation \Rightarrow Negligible uncertainty

Dependence on (Ω, N_{\max}) and the interaction

Numerical results

- Model-space dependence
 - Optimal frequency around 20 MeV
 - Run calculations for $\Omega = 18, 20 \text{ MeV}$
 - Truncations for $N_{\text{max}} = 1 9$
 - ⇒ **On-going** (Ω , N_{max}) dependence: $\epsilon_{(\Omega, N_{\text{max}})} \simeq 5 \text{ meV}$

Dependence on (Ω, N_{\max}) and the interaction

Numerical results

- Model-space dependence
 - Optimal frequency around 20 MeV
 - $^{\rm o}$ Run calculations for $\Omega=18,\,20~{\rm MeV}$
 - Truncations for $N_{\rm max} = 1 9$
 - ⇒ **On-going** (Ω , N_{max}) dependence: $\epsilon_{(\Omega, N_{\text{max}})} \simeq 5 \text{ meV}$

Interaction dependence

- N3LO \equiv 2N-N3LO(500) + 3N-InI
- N4LO-E7 \equiv 2N-N4LO(500) + 3N-InI-E7
- → **On-going** interaction dependence: $\epsilon_{int} \simeq 1 2 \text{ meV}$

Dependence on (Ω, N_{\max}) and the interaction

Numerical results

- Model-space dependence
 - Optimal frequency around 20 MeV
 - $^{\rm o}$ Run calculations for $\Omega=18,\,20~{\rm MeV}$
 - Truncations for $N_{\rm max} = 1 9$
 - ⇒ **On-going** (Ω , N_{max}) dependence: $\epsilon_{(\Omega, N_{\text{max}})} \simeq 5 \text{ meV}$

Interaction dependence

- N3LO \equiv 2N-N3LO(500) + 3N-InI
- N4LO-E7 \equiv 2N-N4LO(500) + 3N-InI-E7
- → **On-going** interaction dependence: $\epsilon_{int} \simeq 1 2 \text{ meV}$

Dependence on (Ω, N_{max}) and the interaction

Numerical results

- Model-space dependence
 - Optimal frequency around 20 MeV
 - Run calculations for $\Omega = 18, 20 \text{ MeV}$
 - Truncations for $N_{\text{max}} = 1 9$
 - → **On-going** (Ω, N_{max}) dependence: $\epsilon_{(\Omega, N_{\text{max}})} \simeq 5 \text{ meV}$

Interaction dependence

- N3LO \equiv 2N-N3LO(500) + 3N-InI
- N4LO-E7 \equiv 2N-N4LO(500) + 3N-InI-E7

→ **On-going** interaction dependence: $\epsilon_{int} \simeq 1 - 2 \text{ meV}$

A 10 meV precision for nuclear structure corrections seems doable in the near future!

Summary

Muonic atoms: a precision probe for nuclear physics

- Radii extraction: reference point + isotope-shift
- Precise reference point: muonic atoms
- → **QUARTET**: 10x exp. improvement for $Z \leq 10$

Summary

Muonic atoms: a precision probe for nuclear physics

- Radii extraction: reference point + isotope-shift
- Precise reference point: muonic atoms
- → **QUARTET**: 10x exp. improvement for $Z \leq 10$
- Nuclear polarization: reaching precision ab initio
 - Critical nuclear theory input for: $E_{2S} \rightarrow \langle r_c^2 \rangle$
 - Theory Goal: reaching 10 meV precision in δ_{TPE}

Summary

Muonic atoms: a precision probe for nuclear physics

- Radii extraction: reference point + isotope-shift
- Precise reference point: muonic atoms
- → **QUARTET**: 10x exp. improvement for $Z \leq 10$
- Nuclear polarization: reaching precision ab initio
 - Critical nuclear theory input for: $E_{2S} \rightarrow \langle r_c^2 \rangle$
 - Theory Goal: reaching 10 meV precision in δ_{TPE}
- Promising on going results for ⁷Li:
 - Weak dependence between χ EFT interactions
 - ➡ NCSM: seems to converge within 5 meV

Summary

Muonic atoms: a precision probe for nuclear physics

- Radii extraction: reference point + isotope-shift
- Precise reference point: muonic atoms
- → **QUARTET**: 10x exp. improvement for $Z \leq 10$
- Nuclear polarization: reaching precision ab initio
 - Critical nuclear theory input for: $E_{2S} \rightarrow \langle r_c^2 \rangle$
 - **Theory Goal**: reaching 10 meV precision in δ_{TPE}
- Promising on going results for ⁷Li:
 - Weak dependence between χ EFT interactions
 - ➡ NCSM: seems to converge within 5 meV

Outlook

- Completing on-going ab initio calculation
 - Refining uncertainty quantification
 - Elastic component: δ_{el}^A with NCSMC
 - Extension to ${}^{6}\text{Li} \Rightarrow$ new isotope-shift test

Summary

Muonic atoms: a precision probe for nuclear physics

- Radii extraction: reference point + isotope-shift
- Precise reference point: muonic atoms
- → **QUARTET**: 10x exp. improvement for $Z \leq 10$
- Nuclear polarization: reaching precision ab initio
 - Critical nuclear theory input for: $E_{2S} \rightarrow \langle r_c^2 \rangle$
 - **Theory Goal**: reaching 10 meV precision in δ_{TPE}
- Promising on going results for ⁷Li:
 - Weak dependence between χ EFT interactions
 - ➡ NCSM: seems to converge within 5 meV

Outlook

- Completing on-going ab initio calculation
 - Refining uncertainty quantification
 - Elastic component: δ_{el}^A with NCSMC
 - Extension to ${}^{6}\text{Li} \Rightarrow$ **new isotope-shift test**
- Future modelling improvements
 - Nuclear physics: higher-order currents
 - Atomic physics: three-photon exchange
 - Hadronic physics: more realistic model

Summary

Muonic atoms: a precision probe for nuclear physics

- Radii extraction: reference point + isotope-shift
- Precise reference point: muonic atoms
- → **QUARTET**: 10x exp. improvement for $Z \leq 10$
- Nuclear polarization: reaching precision ab initio
 - Critical nuclear theory input for: $E_{2S} \rightarrow \langle r_c^2 \rangle$
 - **Theory Goal**: reaching 10 meV precision in δ_{TPE}
- Promising on going results for ⁷Li:
 - Weak dependence between χ EFT interactions
 - ➡ NCSM: seems to converge within 5 meV

Outlook

- Completing on-going ab initio calculation
 - Refining uncertainty quantification
 - Elastic component: δ_{el}^A with NCSMC
 - Extension to ${}^{6}\text{Li} \Rightarrow$ **new isotope-shift test**
- <u>Future modelling improvements</u>
 - Nuclear physics: higher-order currents
 - Atomic physics: three-photon exchange
 - Hadronic physics: more realistic model
- Towards better controlling theoretical uncertainty
 - Shifting from pheno towards EFT approach
 - EFT based on **potential-NRQED** for Z > 1

[Peset et al., EPJA (2015)]

Thank you Merci

www.triumf.ca Follow us @TRIUMFLab

Backup slides

A key probe to develop the Standard Model...

A key probe to develop the Standard Model...

... and pushing the precision frontier further

 $R_{\infty} = 10\ 973\ 731.568160(21)\ \mathrm{m}^{-1}$

A key probe to develop the Standard Model...

... and pushing the precision frontier further

Finite size nuclear contributions

Finite nuclear size contribution

- Orrection to account for non-point like nucleus
 - Similar approach as pure QED contributions
 - Multipole expansion of charge distribution Ο
 - \blacksquare Main contributions $\propto r_c^2$
- Beyond charge radius contributions
 - In principle higher order terms leads to multipoles of ρ
 - Experiments not precise enough for now
 - CREMA = on-going attempt to measure **HFS for proton!**

20

Finite size nuclear contributions

Finite nuclear size contribution

- <u>Correction to account for non-point like nucleus</u>
 - Similar approach as pure QED contributions
 - Multipole expansion of charge distribution
 - \blacksquare Main contributions $\propto r_c^2$
- Beyond charge radius contributions
 - $^{\circ}$ In principle higher order terms leads to multipoles of ρ
 - Experiments not precise enough for now
 - CREMA = on-going attempt to measure **HFS for proton!**

Finite size nuclear contributions

Finite nuclear size contribution

- Orrection to account for non-point like nucleus
 - Similar approach as pure QED contributions
 - Multipole expansion of charge distribution Ο
 - \blacksquare Main contributions $\propto r_c^2$
- Beyond charge radius contributions
 - In principle higher order terms leads to multipoles of
 - Experiments not precise enough for now
 - CREMA = on-going attempt to measure **HFS for pr**

Section	Order	Correction	μH	μD	μ^{3} He ⁺	$\mu^4 \mathrm{He^+}$
IV.A	$(Z\alpha)^4$	r_C^2	$-5.1975r_p^2$	$-6.073 2r_d^2$	$-102.523r_h^2$	$-105.322r_{\alpha}^{2}$
IV.B	$lpha(Zlpha)^4$	eVP ⁽¹⁾ with r_C^2	$-0.028 2r_p^2$	$-0.0340r_d^2$	$-0.851r_{h}^{2}$	$-0.878r_{\alpha}^{2}$
IV.C	$lpha^2(Zlpha)^4$	$eVP^{(2)}$ with r_C^2	$-0.000 2r_p^2$	$-0.000 2r_d^2$	$-0.009(1)r_h^2$	$-0.009(1)r_{\alpha}^{2}$

	Examples v	vith electron	vacuum	polarizati	C					
				e						
⁻ ρ roton!		$\mathscr{C}r_c^2$ term	n in δ_{LS}	5						
	[Pachucki et al. Review of Modern Physics (202									
H	μD	μ^{3} He ⁺		$\mu^4 \text{He}^+$						

Nuclear structure dependent corrections

Nuclear structure effects

- Orrections accounting for non static effects
 - Nucleus is no longer treated as a structureless particle
 - ° Main contribution from two-photon exchange δ_{TPE}
 - Nuclear excited states become necessary
 - \bullet δ_{TPE} contributes at $(Z\alpha)^5$

Beyond TPE

- Further corrections three-, four-, ... photon exchange
- Combinations with vacuum polarization, etc

Nuclear structure dependent corrections

Nuclear structure effects

- Orrections accounting for non static effects
 - Nucleus is no longer treated as a structureless particle
 - Main contribution from **two-photon exchange** δ_{TPE}
 - Nuclear excited states become necessary
 - $\bullet \delta_{TPE}$ contributes at $(Z\alpha)^5$

Beyond TPE

- Further corrections three-, four-, ... photon exchange
- Combinations with vacuum polarization, etc

Two photon exchanges contributions

$$\Delta E_{nl} = -\frac{(4\pi Z\alpha)}{m_r} |\phi_{nl}(0)|^2 \operatorname{Im} \int \frac{\mathrm{d}^4 q}{(2\pi)^4} D^{\mu\rho}(q) D^{\nu\tau}(-q) t_{\mu\nu}(q,k) T_{\rho\tau}(q,k) d\mu_{\mu\nu}(q,k) d\mu_{\mu\mu}(q,k) d\mu_{\mu$$

<u>with</u>:

- $D^{\mu\nu}(q) \equiv$ the photon propagator
- $t_{\mu\nu} \equiv$ the leptonic tensor
- $T_{\mu\nu} \equiv$ the hadronic tensor
- $k \equiv (m_r, 0)$

[Bernabeu et al, Nuclear Physics A (1974)][Rosenfelder Nuclear Physics A (1983)][Hernandez et al. Physical Review C (2019)]

Anti-symmetrized products of many-body HO states

Anti-symmetrized products of many-body HO states

Application to nuclear structure

• Efficient calculation of spectra

- Selection rules ⇒ Fast matrix-vector multiplication
- In practice: $N_L \sim 100 200$ is sufficient

Application to ⁷Li

- $N_L = 200$ for $N_{max} = 1$ to 9
- Ground-state of ⁷Li $|\Psi\rangle \Rightarrow$ **Starting point for** δ_{pol}^{A}

Anti-symmetrized products of many-body HO states

Efficient calculation of spectra

Application to ⁷Li

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals
 - Cases tested based on **electric dipole operator**

23

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals
 - Cases tested based on **electric dipole operator**

• Sum rules tested:
$$\int d\omega f(\omega) S_D(\omega)$$

• $f_{norm}(\omega) = 1$
• $f_{D1}(\omega) = \sqrt{\frac{2m_r}{\omega}}$
• $f_C(\omega) = \frac{m_r}{\omega} \ln \frac{2(Z\alpha)^2 m_r}{\omega}$
• $(+ \text{ more complicated one})$

23

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals
 - Cases tested based on **electric dipole operator**

23

 10^{-}

 $\frac{\mathrm{d}}{\mathcal{E}}$

uo

 -10^{-}

 10^{-5}

 10^{-6}

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals 0
 - Cases tested based on **electric dipole operator** 0

Test convergence sum rules

 10^{-}

 10^{-5}

 10^{-6}

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals 0
 - Cases tested based on electric dipole operator 0

Test convergence sum rules

dE

uo

−10 ר

 10^{-5}

 10^{-6}

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals 0
 - Cases tested based on **electric dipole operator**

• Reaches plateau around $\sim 10^{-5}$ relative error

Test convergence sum rules

First conclusion: numerical noise from Lanczos algo is negligible **Next step:** q-dependent calculations of δ_{pol}^{A} !

