

⁷Li in the no-core shell model with continuum framework with coupling of mass partitions

Jakub Herko

Collaborators: Konstantinos Kravvaris, Petr Navratil, Sofia Quaglioni, Guillaume Hupin, Mark A. Caprio

Outline

- No-core shell model (NCSM)
- No-core shell model with continuum (NCSMC)
- Calculations for ^{7}Li within NCSMC with coupling of mass partitions $^{6}Li + n$ and $^{6}He + p$
 - Bound-state energies
 - Resonances experimentally observed and predicted
 - Charge-exchange reaction ${}^{6}\text{Li}(n,p){}^{6}\text{He}$

No-core shell model (NCSM)

- System of nucleons described by intrinsic Hamiltonian $H = T_{int} + \sum_{i < j} V_{ij}$
- Schrödinger equation $H|\Psi\rangle = E|\Psi\rangle$ solved as eigenvalue problem for Hamiltonian matrix
- \bullet Basis of Slater determinants constructed from harmonic oscillator single-particle states with frequency Ω
- Each basis state carries $N = N_0 + N_{ex}$ oscillator quanta
 - $\mathcal{N}_0 \dots$ number of oscillator quanta in the lowest Pauli-allowed configuration

• Basis truncated by keeping only states with $N_{\rm ex} \leq N_{\rm max}$

Figure courtesy of K. Kravvaris

No-core shell model with continuum (NCSMC)

- Describes both bound and scattering states
- Combines NCSM and NCSM/RGM methods
- NCSM/RGM organizes nucleons into clusters, each described within NCSM
- First, NCSM calculations for the whole system and the clusters are done
- Wave function expanded in terms of NCSM eigenstates and NCSM/RGM binary-cluster states:

$$\Psi = \sum_{\lambda} c_{\lambda} | \bigvee \rangle + \sum_{\nu} \int dr u_{\nu}(r) | \langle \rangle \rangle$$

r ... parameter coordinate playing role of distance between clusters $u_\nu(r)$... continuous amplitudes representing intercluster relative motion

- Distribution of nucleons between clusters is called "mass partition"
- Expansion coefficients c_{λ} and amplitudes $u_{\nu}(r)$ calculated by solving NCSMC equations on Lagrange mesh

Figure courtesy of K. Kravvaris

No-core shell model with continuum (NCSMC)

- NCSMC equations can be solved for bound or scattering states by choosing asymptotic form of $u_{\nu}(r)$
- For scattering states:

$$u_{\nu}(r \to \infty) \propto \delta_{\nu i} I_{\nu}(r) - S_{\nu i} O_{\nu}(r)$$

i ... initial channel

 $I_{\nu}(r), O_{\nu}(r)$... ingoing and outgoing Coulomb wave functions

- $S_{\nu i}$... scattering matrix \rightarrow cross sections
- Scattering matrix is unitary \Rightarrow eigenvalues $e^{2i\delta}$
 - δ ... eigenphase shifts \rightarrow resonances:

Calculations for 7 Li within NCSMC with coupling of mass partitions 6 Li + n and 6 He + p

- Motivation: nuclear astrophysics, primordial nucleosynthesis, ³H for fusion energy generation via ${}^{6}\text{Li}(n,{}^{3}\text{H}){}^{4}\text{He}$
- Previous work [1] taking into account relevant mass partitions in separate calculations predicts S-wave 1/2⁺ resonance in ⁶He + p just above proton eparation energy
- No such resonance was experimentally observed [2]
- We include mass partitions ${}^{6}Li + n$ and ${}^{6}He + p$ in single calculation
- We also predict S-wave $1/2^+$ resonance just above proton separation energy, but only in ${}^{6}Li + n$ channel
- Coupling of mass partitions allows for calculation of charge-exchange reaction ${}^{6}\text{Li}(n,p){}^{6}\text{He}$

[1] Vorabbi *et al.* Phys. Rev. C **100**, 024304 (2019)
[2] Dronchi *et al.* Phys. Rev. C **107**, L061303 (2023)

Calculations for ^{7}Li within NCSMC with coupling of mass partitions ^{6}Li + n and ^{6}He + p

- Chiral N³LO nucleon-nucleon interaction used
- NCSM eigenstates taken into account:
 - 4 states of ⁶Li: 1⁺0, 3⁺0, 0⁺1, 2⁺1
 - 2 states of ⁶He: 0⁺1, 2⁺1
 - Lowest 12 negative-parity and lowest 6 positive-parity states of ⁷Li
- $\hbar\Omega = 20$ MeV, $N_{\rm max} = 11$
- \bullet Calculated observables: bound-state energies, energies and widths of resonances, cross section of ${}^{6}{\rm Li}(n,p){}^{6}{\rm He}$

Bound-state energies for ⁷Li

- Bound states reproduced in correct order
- Results almost independent of mass partition bound states well described by NCSM
- Reasonable agreement between calculated and experimental excitation energies

Resonances in ⁷Li - experimentally observed

- Experimentally observed resonances reproduced
- Discrepancy between calculated and experimental widths
- Results depend on mass partition

Resonances in ⁷Li - experimentally observed

- Experimentally observed resonances reproduced
- Discrepancy between calculated and experimental widths
- Results depend on mass partition

Resonances in ⁷Li - predicted

- Eight resonances predicted
- Results depend on mass partitions
- Effect of coupling

1/2⁺ eigenphase shift and diagonal phase shifts

- Previous NCSMC calculations neglecting coupling of mass partitions [1] predict S-wave 1/2⁺ resonance in 6 He + p just above proton separation energy
- No such resonance was experimentally observed [2]

- In present calculation the $1/2^+$ resonance is dominated by ${}^2S_{1/2}({}^6\text{Li}(1^+0) + n)$ channel
- In present calculation no $1/2^+$ resonance found in ⁶He + p channels

[1] Vorabbi *et al.* Phys. Rev. C **100**, 024304 (2019)
[2] Dronchi *et al.* Phys. Rev. C **107**, L061303 (2023)
Jakub Herko

Cross section of ⁶**Li**(*n*,*p*)⁶**He reaction**

- Threshold and overall shape reproduced
- Values overestimated
- Missing (n, α) channel

Conclusion

- NCSMC calculations for ⁷Li coupling mass partitions ${}^{6}Li + n$ and ${}^{6}He + p$ done
- Experimentally observed states reproduced
- Excitation energies in reasonable agreement with experiment
- Widths of resonances differ from experiment probably due to omitted mass partitions
- Energies and widths of resonances affected by coupling of mass partitions
- 1/2⁺ resonance predicted, but only in ⁶Li + n discrepancy between previous NCSMC prediction and experiment explained
- Cross section of ⁶Li(n, p)⁶He calculated: overall shape reproduced, values overestimated
- Future work: Include ⁴He + ³H and three-nucleon iteraction

Collaborators

Konstantinos Kravvaris, Sofia Quaglioni Lawrence Livermore National Laboratory

Petr Navrátil TRIUMF

Guillaume Hupin Université Paris-Saclay, CNRS/IN2P3, IJCLab

Mark A. Caprio University of Notre Dame

NCSM energy of ground state of ⁶Li

Energies of NCSM states of ⁶Li

Energies of bound states of ⁷Li

Excitation energies of bound states of ⁷Li

Reproduced resonances in ⁷Li

3/2⁻ eigenphase shift

Predicted negative-parity resonances in ⁷Li

Predicted positive-parity resoances in ⁷Li

1/2⁺ eigenphase shift

