Symmetry breaking: spurious and spontaneous

Ragnar Stroberg

TRIUMF PAINT25 Vancouver February 26 2025

Part 1: The Spontaneous

How should we treat deformed nuclei, from an ab initio point of view?

Ragnar Stroberg

University of Notre Dame

University of Notre Dame

IMSRG

$H(s) = H + [\Omega, H] + \frac{1}{2!} [\Omega, [\Omega, H]] + \dots$ $\mathcal{O}(s) = \mathcal{O} + [\Omega, \mathcal{O}] + \frac{1}{2!} [\Omega, [\Omega, \mathcal{O}]] + \dots$

Truncate all operators at NO2B level

VS-IMSRG in *sd* shell underpredicts E2 transition strength by a factor ~2.

Phenomenologically, this is fixed by using **effective** charges $e_p \sim 1.5$, $e_n \sim 0.5$.

Effective charges should *emerge* from the VS-IMSRG transformation.

17**O**

Effective charges: the lore

¹⁷O ground state electric quadrupole moment:

Experiment: -2.558 e fm² VS-IMSRG: -1.40 e fm² 17**O**

TABLE V. Effective charge for a $d_{5/2}$ nucleon above an ¹⁶O core for different approximation schemes and interaction models. The model space is defined by $e_{\text{max}} = 3$, $\hbar \omega = 16$ MeV. The last three columns give results of direct diagonalization truncated to N_{max} quanta of excitation.

					VS-	CI N _{max}			
int.		СР	TDA	RPA	IMSRG	2	4	6	
$Q \cdot Q$	e _n	0.23	0.29	0.42	0.43	0.26	0.32	0.41	
	e _p	1.25	1.31	1.44	1.49	1.30	1.37	1.46	
<i>NN</i>	e_n	0.16	0.17	0.17	0.17	0.14	0.17	0.19	
only	e_p	1.05	1.09	1.10	1.04	1.04	1.05	1.05	
$\frac{NN}{+3N}$	e _n	0.24	0.31	0.33	0.26	0.20	0.23	0.29	
	e _p	1.07	1.16	1.19	1.02	1.04	1.05	1.05	

Going beyond IMSRG(2) with IMSRG(3f₂)

Will it work for E2s as well?

 $[\Omega, [\Omega, H]_{3b}]_{1b, 2b}$

H

Ω

Ω

Good spectra \neq good deformation

²⁰Ne $B(E2; 2_1^+ \rightarrow 0_1^+)$ Experiment: 66 e²fm⁴ = 20 wu R(4/2)=2.6

IMSRG(2): 29 $e^{2}fm^{4} = 9$ wu R(4/2) = 2.0 (with EM1.8/2.0)

²⁸Si

Where is the extra collectivity hiding??

Part 2: The spurious

Isospin breaking relevant for calculations of the δ_C correction for superallowed β decays

Alex Farren REU student

arXiv 2412.10693

δ_{C} with the VS-IMSRG

SRS, Particles 4 521 (2021)

Spurious isospin breaking

University of Notre Dame

Spurious (spontaneous?) isospin breaking at the Hartree-Fock level

Ragnar Stroberg

University of Notre Dame

Spurious isospin breaking from IMSRG(2)

$$\frac{d}{ds}[H, T^2] = \left[\eta, [H, T^2]\right]$$
$$= \left[[\eta, H], T^2\right] + \left[H, [\eta, T^2]\right]$$
if initially $[H, T^2] = 0$, these should cancel.

Terms that need to cancel show up on opposite sides of the IMSRG(2) truncation.

What can spoil $[\eta, T^2] = 0$?

$$[T^2, H] = 0$$
 $[T^2, H^d] \neq 0$ $[T^2, H^{od}] \neq 0$

This is remediated by using the same valence space for protons and neutrons.

$$|M_F|^2 = |M_F^{\rm iso}|^2 (1 - \delta_C)$$

Isospin conserving interaction, plus Coulomb δ_C (%)

							⁴ N				
						= 0					
	r	Po		IF	Н	F					
η	no Cou						Coulomb	no Coul	Coulomb		
Any	COR	mnute with and				4.441e-14	-2.220e-14	-0.0103			
		COI	npu		iur anu		$\rightarrow \infty$				
		\	اسمط		ulamb /	and	/				
n	r	- WIL						HF			
-1	no Cou						Coulomb	no Coul	Coulomb		
SMW (EN)	-0.1847	tak	רא מי	-0.01399	5.264e-06	-0.01386					
SMW (MP)	-0.1845	tan		-0.01401	2.220e-14	-0.01385					
SMa (EN)	-0.1847						-0.01399	5.351e-06	-0.01386		
SMa (MP)	-0.1845				and a second a support the support		-0.01401	3.207e-09	-0.01385		
\mathbf{SMit}	-0.18505	-0.22100	-0.19181	-0.23/60	SMit	-2.220e-14	-0.01401	4.441e-14	-0.01387		
Iso SMW (EN)	-0.18441	-0.21589	-0.20684	-0.24581	Iso SMW (EN)	4.441e-14	-0.01331	-2.220e-14	-0.01325		
Iso SMW (MP)	-0.18451	-0.21600	-0.20693	-0.24594	Iso SMW (MP)	4.441e-14	-0.01331	2.220e-14	-0.01326		
Iso SMa (EN)	-0.18441	-0.21589	-0.20683	-0.24580	Iso SMa (EN)	2.220e-14	-0.01332	2.220e-14	-0.01325		
Iso SMa (MP)	-0.18451	-0.21599	-0.20692	-0.24593	Iso SMa (MP)	4.441e-14	-0.01331	2.220e-14	-0.01326		
Iso SMit	-0.18276	-0.21469	-0.20245	-0.24325	Iso SMit	-2.220e-14	-0.01334	6.661e-14	-0.01329		
			and a second second second second					Sugar maring a second and			

University of Notre Dame

Summary

- Quantitative derivation of effective charges remains elusive.
- The standard core-polarization/PV coupling term is dominant, but doesn't seem to be enough.
- IMSRG(3) contributions don't seem to improve things significantly.
- There are multiple sources of spurious isospin breaking in the IMSRG workflow; many can be eliminated.
- Optimal procedure for δ_C is not yet clear.

Additional slides

17**O**

psd interaction, decouple sd valence space

