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• Single-particle features

• Collective behaviour

[Pictures from Dytrych et al., PRL, 2020]
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Average properties – strength moments

Studied quantity: multipole strength

• Transition amplitudes: height of peaks

• Energy difference: position of peaks

Quantify the most relevant features of the strength

Related moments
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Table 1 GCM and PGCM m1 monopole moments computed via the SOES and GSEV approaches for 16O, 24Mg, 28Si (ground-state and prolate
isomer) and 46Ti

16O 24Mg 28Si 28Si iso
46Ti

SOES GSEV SOES GSEV SOES GSEV SOES GSEV SOES GSEV

GCM 7940 8611 16,676 17,850 21,046 22,384 22,104 23,625 43,185 46,776

PGCM 8386 8617 17,178 17,978 21,490 22,526 22,846 24,016 44,392 47,046

All quantities are in fm4MeV

Fig. 2 Integral m1(ω) moment, as defined in Eq. (21), as a function
of the maximum excitation energy and normalised by the GSEV value
of m1 from PGCM monopole calculations of 16O, 24Mg, 28Si (ground-
state and prolate isomer) and 46Ti

lowest eigenstates of axially deformed harmonic oscilla-
tors, the two generator coordinates being the corresponding
axial and perpendicular oscillator frequencies. While realis-
tic (P)GCM calculations rely on more general Bogoliubov
vacua (and include particle-number and angular-momentum
projections), such a proof gives some confidence that the
monopole operator might be well exhausted in present 2D
(P)GCM calculations using r2 and β2 as generator coordi-
nates. It is the goal of the present section to test quantitatively
to which extent this is indeed the case for m1.

4.2 Results

The (P)GCM m1 values obtained from both evaluation
methods are reported in Table 1. Furthermore, their differ-
ence [rescaled according to their expected A5/3 scaling; see
Eq. (25)] is displayed in Fig. 1 along with the difference in
percentage.

Results obtained via the SOES approach are about 6–
7% smaller than their GSEV counterpart across the five
cases under consideration. The underestimation of the SOES
approach is stable from A = 16 to A = 46 once the A5/3

scaling has been removed. The small but systematic improve-
ment of the PGCM over the GCM is attributed to the benefit
of the symmetry restoration, i.e. symmetry contaminants are

removed by the angular momentum projection on J = 0 such
that the operator r2 is better exhausted by the corresponding
subspace SP . For PGCM calculations the SOES m1 moment
as a function of the maximum excitation energy, reading

m1(ω) ≡
∫ ω

0
E S(E)dE, (21)

is displayed in Fig. 2 normalised by the corresponding GSEV
value. The excited states included in the SOES evaluation
reach a maximum energy of 97 MeV for 16O, 74 MeV for
24Mg, 94 and 98 MeV for the ground and isomeric state of
28Si and 102 MeV for 46Ti.

Eventually, the operator r2 is exhausted, within a few per-
cents, by the (P)GCM subspace S(P). This translates into the
fact that the SOES approach to m1 can be safely used within
a few percent uncertainty.10 Differences between the GSEV
and SOES approaches signal the necessity of improving the
determination of an optimal (P)GCM subspace S(P). While
this topic is of current interest, it goes beyond the scope of
the present article.

5 Angular-momentum projection

The effect of angular momentum projection on the monopole
moments mk , k = −1, 0, 1, 2, 3, evaluated via the SOES
approach is presently quantified by comparing results from
GCM and PGCM calculations. As seen in Table 2, the angular
momentum projection systematically enlarges mk in a way
that increases with k. In fact, while the increase with the
moment order is rather marked in 16O, it is limited in 24Mg
and has entirely disappeared in 46Ti. Thus, and even though
the range of nuclei presently tested is too limited to draw
general conclusions, the impact of the angular momentum
projection seems to decrease with A.

10 The resulting uncertainty for a moment mk can be conjectured to
increase with k. Indeed, the energy weight Ek entering mk accentu-
ates the importance of higher-energy states as k increases while the
truncation of the completeness relation in the SOES approach probably
affects more this higher-energy domain. Given that m1 is the highest
moment that can be computed exactly within the GSEV approach, this
conjecture cannot be presently tested.
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Moment operators
Different evaluation streategies for the moments

Must know excited states

Ground state only

Complexity is shifted to the operator structure

Many-body operators

• Exact up to m1

6-7 % difference in PGCM 
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[EPJA (2024) 60, 155]



Previous PGCM study
7

I. [EPJA (2024) 60, 133]
II. [EPJA (2024) 60, 134]
III. [EPJA (2024) 60, 155]
IV. [EPJA (2024) 60, 233]



Strategy in the IMSRG framework

MAGNUS EXPANSION AND IN-MEDIUM SIMILARITY . . . PHYSICAL REVIEW C 92, 034331 (2015)

Starting from a general second-quantized Hamiltonian with
two- and three-body interactions,

Ĥ =
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†
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all operators can be normal-ordered with respect to a finite-
density Fermi vacuum |!⟩ (e.g., the Hartree-Fock ground
state), as opposed to the zero-particle vacuum.2 Wick’s
theorem can then be used to exactly write H as

H = E +
∑
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fqr : a†
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where strings of normal-ordered operators obey the following
relation.

⟨!| : a†
q · · · ar : |!⟩ = 0, (13)

and the terms in Eq. (12) are given by
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q
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(3)
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Here, the initial n-body interactions are denoted by V (n),
and nq = θ (ϵF − ϵq) are occupation numbers in the reference
state |!⟩, with Fermi energy ϵF. It is evident that the
normal-ordered 0-, 1-, and 2-body terms include contributions
from the three-body interaction V (3) through sums over the
occupied single-particle states in the reference state |!⟩.
Neglecting the residual three-body interaction leads to the
normal-ordered two-body approximation (NO2B), which has
been shown to be an excellent approximation in many nuclear
systems [9,11,25]. Truncating the in-medium SRG equations
to normal-ordered two-body operators, which we denote by
IM-SRG(2), will approximately evolve induced three- and
higher-body interactions through the nucleus-dependent 0-,
1-, and 2-body terms.

Using Wick’s theorem to evaluate Eq. 3 with H (s) =
E0(s) + f (s) + "(s) and η(s) = η(1)(s) + η(2)(s) truncated to

2In the present work, we restrict our attention to single reference
(i.e., closed-shell) systems for which a single Slater determinant
provides a reasonable starting point. See Refs. [15,17,19] for
extensions of the IM-SRG to open-shell systems.

normal-ordered two-body operators, one obtains the coupled
IM-SRG(2) flow equations

dE

ds
=

∑
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ηqrfrq(nq − nr ) + 1
2
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(20)

where n̄r ≡ 1 − nr and the s dependence has been suppressed
for brevity.

For the calculation of the ground state of a closed-shell
system in the IM-SRG(2) approximation, it is simple to
identify H od = {"abij ,fai, + H.c.}, where a,b denote particle
(unoccupied) and i,j hole (occupied) single-particle states,
as the relevant vertices which connect our chosen reference
state |!⟩ with higher particle-hole excitations; see Fig. 1. By
designing a generator to eliminate these terms, one finds that
the 0-body term approaches the interacting ground state energy
in the limit of large s,

lim
s→∞

E0(s) = ⟨!|H (s)|!⟩ = Egs . (21)
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FIG. 1. Schematic representation of the initial and final Hamilto-
nians, H (0) and H (∞), in the many-body Hilbert space spanned by
particle-hole excitations of the reference state.
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FIG. 1. Schematic representation of the initial and final Hamilto-
nians, H (0) and H (∞), in the many-body Hilbert space spanned by
particle-hole excitations of the reference state.
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Diagonal Off-diagonal

Slater determinant
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Steps
• Start from the moment operator in the HO basis

• Perform an IMSRG(2) calculation

• Consistently evolve the moment operators using Magnus



Quadrupole focus I :  Kumar invariants
0th quadrupole moment Model-independent deformation «measure» 

[Poves et al., PRC 101 (2020) 054307]

Higher invariants also fundamental
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Quadrupole focus II :  GQR centroid
Centroid of the quadrupole strength

IMSRG(2) GQR study across the nuclear chart
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Generalised eigenvalue problem

(GCM-like equation but in an operator space)

Fragmenting the strength

K=3 returns the RPA equations (local RPA)

Generalisation of the moment operators

Physical interpretation

Improving the previous description coupling several modes

Optimal superposition

Variation in the subspace

Family of equations

[PG Reinhard et al., PRA 41 (1990) 10, 5568]
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Response
Perturbation

Perturbation
Response

The sum rules used as input are satisfied by construction

i.e.: if IMSRG(2) is used, then m0 and m1 are IMSRG(2) exact

Family of centroids



Implementation details
• Moment operators implemented within the imsrg++ code     

• J-scheme expressions of moments 0 and 1 from            

• Benchmarked vs QFAM code

• Operator space explored in present calculations

Spherical Bessel functions: higher volume modes

Long-wavelength limit describes pure surface vibrations

Introduces local compressions (volume)

[github.com/ragnarstroberg/imsrg]

[Lu and Johnson, PRC 97 (2018) 3, 034330]

[Beaujeault-Taudière, Frosini et al., PRC 107 (2023), L021302]
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K=0 equation implemented



Results - Quadrupole
• Important energy shift due to correlation

• Little fragmentation

• Negligible energy shift due to modes coupling

• Good emax convergence

• Interaction comparison

14

[Arthuis et al., arXiv:2401.06675v1]

EXP

Centroids

shift

(superposed)



Monopole
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Dipole

• Larger energy shift (~1 MeV) due to modes coupling

• Interaction dependence

• Nice agreement with experimental data

• IMSRG shift towards too high energy

• Centre of Mass contaminants ?
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General considerations

• Useful to quantify the impact of dynamical correlation (many-body uncertainty)

• Little fragmentation in this frame

• The energy shift of the main resonance depends on the multipolarity

Open questions (among others)

• Where does this stand in a hierarchy of IMSRG-based approximations ? (TDA, 2ndTDA, EOM…)

• How to further enrich the operator space ?

• What’s wrong with the dipole ? (also problematic in CC-LIT and IMSRG-…TDA )

Perspectives

• Focus on other systems and integration with VS-IMSRG for open-shell systems

• Enlarge the operator space

• Comparison to existing methods

Conclusions
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Backup slides
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Dielectric theorem in the IMSRG
Add small perturbation to H

Numerically easier

20

Steps
• Solve the perutbed problem for HF

• Then evolve with the IMSRG

• Repeat for several lambdas and take the derivative

IMSRG flowIMSRG flow

Perturbation

Disclaimer: only scalar perturbations



Results – Monopole resonance
Objective: characterise systematically impact of dynamical correlations

Comparison to CC-LIT
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Comments
• Better agreement (CC – IMSRG) for low energy part of the spectrum

• CC sum rules are. Given by the sum over the excited states, more difficult to converge

• Too small 3-body basis here (needed for CC comparison)

• Experimental values are anyway smaller

• No interactions comparison performed
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Different approaches
I .  C e n t r o i d  m e t h o d  

I I .  S c a l i n g  m e t h o d  

The sum rules used as input are satisfied by construction

i.e.: if IMSRG(2) is used, then m0 and m1 are IMSRG(2) exact

Exact up to two-body Fragmentation due to coupling

The exact implementation is a four-body operator !

Assume instead (true for most EDF, not for chiral interactions)

generates a collective path

[Tanimura, Lacroix, Scamps, PRC 92 (2015), 034601]

23



Results – Scaling method

Comparison to RPA needed (soon)

BUT

The “deformation” picture doesn’t work well with the IMSRG

24



Results – Broken dipole

• For some reason, the dipole behaves differently

• Shift towards too high energy

• Also problematic in other methods (IMSRG-…TDA, CC-LIT)

• On the other hand, simple RPA seems to do great

What are we missing ? 

• Limited operator space ?

• Interaction ?

• IMSRG flow ?

• Centre of Mass contaminants ?
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