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Solving the Schrödinger equation at polynomial cost

Hamiltonian partitioning: H = H0 + H1

‘easy’-to-handle mean-field-like N4

size of 1B Hilbert space

Eigenvalue equation for the unperturbed state:
<latexit sha1_base64="eJzaF3DXuNe6WnmlSocREERNt0c=">AAACo3icbVFNTxRBEO0dURH8WPTopcOGBC+bGWPAiwnRmJB4AbILJDvjpKa3gM5290y6q1HSmZ/ir/GqP8B/Y++yJAxQp1fvVaWqXlWNko7S9F8vebTy+MnT1Wdr689fvHzV33h97GpvBY5FrWp7WoFDJQ2OSZLC08Yi6ErhSTX7MtdPLtE6WZsRXTVYaDg38kwKoEiV/d39Ms1nSCEfXSBBOfsettN3bcs/8a83yUN62R+kw3QR/D7IlmDAlnFQbvRG+bQWXqMhocC5SZY2VASwJIXCdi33DhsQMzjHSYQGNLoiLC5s+ZZ3QDVv0HKp+ILE2x0BtHNXuoqVGujC3dXm5EPaxNPZxyJI03hCI+aDSCpcDHLCymgd8qm0SATzzZFLwwVYIEIrOQgRSR+97AysLETLOicFJ72R9LNLohegulSlu7mIz3WRsmjwh6i1BjMN+SWKNuSxNv4hu+v6fXD8fpjtDHcOPwz2Pi8/ssresk22zTK2y/bYPjtgYybYL/ab/WF/k63kW3KUjK5Lk96y5w3rRFL8B5SB02A=</latexit>

H0 |⇥(0)
k i = E

(0)
k |⇥(0)

k i

‘hard’-to-handle beyond-mean-field  ,   Np p > 4

Wave-operator expansion:
<latexit sha1_base64="4ptfuLptQmGZTqqJhU34Rhms5n0="></latexit>

| �
ki = ⌦k |⇥(0)

k i Resummation of dynamical correlations

• Perturbative expansion: Taylor-like series 

• Non-perturbative expansion: CC, SCGF, IMSRG

What is an optimal choice for the reference state?

Correlation-expansion methods

Our choice: polynomial methods with    →  CPU-scalable to heavy massesA static correlations

included in ref. state through sym. break.
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The reference state

Symmetries of the reference state

• Chosen to lift particle-hole degeneracies:

• Chosen to include relevant static correlations for the system under study

Doubly closed-shell

Singly open-shell

Doubly open-shell

~2010

2010 - 2020

2020 - …

sHF

sHFB

dHF(B)

sMBPT, sIMSRG, sCC, sDSCGF

sBMBPT, sBCC, sIMSRG, sGSCGF

d(B)MBPT, (P)dCC, PGCM-PT, dDSCGF

• Opening SU(2) keeps polynomial cost but increases N Techniques to moderate cost:
- Natural Orbitals (NAT)
- Importance Truncation (IT)
- Tensor Factorization (TF)

[Duguet, Frosini, 
Hagen, …]

[Demol, Duguet, Hergert, 
Somà, Tichai, …]

[Barbieri, Bogner, Hagen, 
Hergert, …]

IMSRG

[Hoppe et al. 2021]
[Tichai et al. 2018]

[Frosini et al. 2024]
[Porro et al. 2021]

[Scalesi et al. 2025]
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[Duguet, Frosini, 
Hagen, …]

[Demol, Duguet, Hergert, 
Somà, Tichai, …]

[Barbieri, Bogner, Hagen, 
Hergert, …]

IMSRG

[Hoppe et al. 2021]
[Tichai et al. 2018]

[Frosini et al. 2024]
[Porro et al. 2021]

[Scalesi et al. 2025]check out   Eur. Phys. J. A 61, 1 (2025)
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The reference state

Symmetries of the reference state

• Chosen to lift particle-hole degeneracies:

• Chosen to include relevant static correlations for the system under study

Doubly closed-shell

Singly open-shell

Doubly open-shell

~2010

2010 - 2020

2020 - …

sHF

sHFB

dHF(B)

sMBPT, sIMSRG, sCC, sDSCGF

sBMBPT, sBCC, sIMSRG, sGSCGF

d(B)MBPT, (P)dCC, PGCM-PT, dDSCGF

• Opening SU(2) keeps polynomial cost but increases N Techniques to moderate cost:
- Natural Orbitals (NAT)

Investigate the necessity of breaking SU(2) to study doubly open-shell at polynomial cost

Develop a new SU(2)-breaking non-perturbative method

- Importance Truncation (IT)
- Tensor Factorization (TF)

[Duguet, Frosini, 
Hagen, …]

[Demol, Duguet, Hergert, 
Somà, Tichai, …]

[Barbieri, Bogner, Hagen, 
Hergert, …]

IMSRG

[Hoppe et al. 2021]
[Tichai et al. 2018]

[Frosini et al. 2024]
[Porro et al. 2021]

[Scalesi et al. 2025]

Focus of this talk!
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• Computational setting: emax=12, e3max=18, EM 1.8/2.0

Polynomial:
sHFB

sBMBPT(2)

sBCCSD

sVS-IMSRG(2)

dHFB

dBMBPT(2)

Impact of correlations on nuclear binding energies

• Goal: proof that deformation is mandatory for an ab initio description at polynomial cost

• Systems under study: singly open-shell (Ca) and doubly open-shell (Cr)

Non-polynomial:

• Step-by-step study of the contribution of MB correlations to the total energy and I-II derivatives

SU(2) Conserving vs SU(2) Breaking 

Two-neutron separation energy:

Two-neutron shell gap:

[Stroberg et al. 2022]

[Tichai et al. 2020]

[Frosini et al. 2021]

[Tichai, Demol, Duguet 2024]

[Hebeler et al. 2011]

<latexit sha1_base64="0WbsBPTaLxj5CCVSvH2+F+UayjY=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVKtgyU6S6LIrgqlS0F2yHkknTNjSTGZNMoQx9ATe+ihsXirh17863MdPOQqs/BL785xyS87sBo1JZ1peRWlhcWl5Jr2bW1jc2t8ztnbr0Q4FJDfvMF00XScIoJzVFFSPNQBDkuYw03OFFXG+MiJDU57dqHBDHQ31OexQjpa2OeXDTiYp8kqsc3x3BNrkP6Qhe5ir5YnzPx6ihY2atgjUV/At2AlmQqNoxP9tdH4ce4QozJGXLtgLlREgoihmZZNqhJAHCQ9QnLY0ceUQ60XSbCTzUThf2fKEPV3Dq/pyIkCfl2HN1p4fUQM7XYvO/WitUvTMnojwIFeF49lAvZFD5MI4GdqkgWLGxBoQF1X+FeIAEwkoHmNEh2PMr/4V6sWCXCqXrk2z5PIkjDfbAPsgBG5yCMrgCVVADGDyAJ/ACXo1H49l4M95nrSkjmdkFv2R8fANkd5fz</latexit>

S2n(N,Z) → E(N ↑ 2, Z)↑ E(N,Z)
<latexit sha1_base64="E9yXT1PdK6OAXEUCOUPwEOuuOGA=">AAACHHicbVDLSgMxFM34rPVVdekmWISKWmaqVJdFXbiSirYW21Iy6Z02NJMZk0yhDP0QN/6KGxeKuHEh+DemD6Q+DgTOPedebu5xQ86Utu1Pa2p6ZnZuPrGQXFxaXllNra2XVRBJCiUa8EBWXKKAMwElzTSHSiiB+C6HG7dzOvBvuiAVC8S17oVQ90lLMI9Roo3USB3UzoBr0ohzop+52LvdwTW4i1gXX01I+9/Vbs7UjVTaztpD4L/EGZM0GqPYSL3XmgGNfBCacqJU1bFDXY+J1Ixy6CdrkYKQ0A5pQdVQQXxQ9Xh4XB9vG6WJvUCaJzQeqpMTMfGV6vmu6fSJbqvf3kD8z6tG2juux0yEkQZBR4u8iGMd4EFSuMkkUM17hhAqmfkrpm0iCdUmz6QJwfl98l9SzmWdfDZ/eZgunIzjSKBNtIUyyEFHqIDOURGVEEX36BE9oxfrwXqyXq23UeuUNZ7ZQD9gfXwBjZqehA==</latexit>

!2n(N,Z) → S2n(N,Z)↑ S2n(N + 2, Z)
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S2n(N,Z) → E(N ↑ 2, Z)↑ E(N,Z)
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!2n(N,Z) → S2n(N,Z)↑ S2n(N + 2, Z)

check out   Eur. Phys. J. A 60, 209 (2024)
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Singly open-shell

• Quantitative defect: underbinding

• Qualitative defect: wrong curvature

Low-order dynamical correlations:

• Binding energy corrected

Spherical mean-field:

• Improved curvature (not fully quant.)

SU(2)-conserving ab initio approaches
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Doubly open-shell
• No presence of magicity in Exp. data

• Defects even more pronounced

• Still wrong curvature

• Correct binding energy

(At least) high orders needed for SU(2)-cons. ref. state

• Wrong shell gaps

• Correct shell gap
• Improved curvature

Non polynomial:

Low-order dynamical correlations:

Spherical mean-field:

SU(2)-conserving ab initio approaches
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• Underbinding and wrong curvature

Low-order dynamical correlations:

• Slightly improved curvature

Singly open-shell

Deformed mean-field:

SU(2)-breaking ab initio approaches

6



Doubly open-shell

• Underbinding but correct curvature

• Correct curvature

• Correct shell gaps

• Underbinding corrected

• Correct shell gaps

Non polynomial for reference

• Qualitatively correct S2n

• Quantitatively correct S2n

Deformed mean-field:

Low-order dynamical correlations:

SU(2)-breaking ab initio approaches
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Doubly open-shell

• Underbinding but correct curvature

• Correct curvature

• Correct shell gaps

• Underbinding corrected

• Correct shell gaps

Non polynomial for reference

• Qualitatively correct S2n

• Quantitatively correct S2n

Deformed mean-fi

Low-order dynamical correlations:

SU(2)-breaking ab initio approaches

Deformation mandatory for an ab initio description of doubly open-shell nuclei
at low polynomial cost
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�v̆ ⌘ 1

dv̆

dvX

mv0

v̄vv0vv0

-

-

-       number of nucleons in the open shell<latexit sha1_base64="ib82fv//H/rRBAEmHzAl0aNuA8A="></latexit>av

•  

•                                      ,

concavity ESPE
<latexit sha1_base64="v5YW1mIHR35QyASW+lqg7bqppoE="></latexit>

�sHF-EFA

2n (av) = 4�v̆

<latexit sha1_base64="50wqfIeMu8iLNSUhzbPX7COxEfU="></latexit>

"sHF-EFA

v̆ (av) = "CS

v̆ + �v̆av

•        negative

concave binding energy

decreasing ESPE

[Duguet et al. 2020]

monopole valence-shell ME

<latexit sha1_base64="OgomB2vsNTzhlpQqLkEFIAX7Wr8="></latexit>

�EsHF-EFA(av) ⌘ ↵v̆av +
�v̆

2
a2v

<latexit sha1_base64="HbpkP1eyFuwNPqnq/3U7QHK/CZ0="></latexit>

↵v̆ = "CS
v̆

• Weak pairing in ab initio  →  sHF-EFA ≈ sHFB-ZP

Analytical analysis of wrong curvature in spherical HFB

• Conclusions tested to be stable w.r.t. interaction (LECs, Chiral Order, SRG)
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A-body wave function

Chapter 1
Basics of Green’s function theory
1.1 Many-body Schrödinger equation
In the ab initio approach, nuclear systems are described as a collection of A non-relativistic
interacting nucleons. The properties of such systems are determined by solving the A-
body Schrödinger eigenvalue equation

H|ΨA
k 〉 = EA

k |ΨA
k 〉 (1.1)

and/or its time-dependent counterpart, depending on whether one is interested in just the
(static) properties of a given system or also in its possible reactions with (or transitions
to) other systems. In the present document the focus will be on the time-independent
problem, i.e., on the determination of A-body energies EA

k and A-body eigenstates |ΨA
k 〉

that result from Eq. (1.1), together with all observables of interest that can be computed
from them. The A-body Hamiltonian entering Eq. (1.1) is generally written in the second-
quantised form

H =
∑

α

tαβ a†
αaβ + 1

4
∑

αγ
βδ

vαγβδ a†
αa†

γaδaβ + 1
36

∑

αγε
βδη

wαγεβδη a†
αa†

γa†
εaηaδaβ + . . .

≡ T + V + W + . . . , (1.2)

where tαβ represent the matrix elements of the kinetic energy operator1, while vαγβδ and
wαγεβδη denote matrix elements of generic2 two- and three-body operators respectively.
Greek indices α, β, γ, . . . label a basis in the one-body Hilbert space H1, whereas a†

α and
aα denote the associated creation and annihilation operators. In practice, interactions
between 4 or more nucleons have been shown to contribute only marginally to nuclear
observables and are discarded in the large majority of nuclear structure calculations3. For
the remainder of this chapter the Hamiltonian (1.2) is thus truncated at the three-body
level.

1Since nuclei are self-bound objects, one is in fact interested in the translationally invariant, internal
Hamiltonian Hrel ≡ H − Hcm, where Hcm denotes the centre-of-mass kinetic energy. In practice one
thus replaces T with the relative kinetic energy Trel ≡ T − Hcm, which is rewritten as a sum of a
one- and a two-body operators. The most appropriate way of expressing the latter two-body operator
in the case of particle-number breaking theories (as the one presented in Chapter 2) is discussed in
Ref. [87].

2The formalism presented in Chapters 1 and 2 is independent of the choice of many-body operators,
i.e. is Hamiltonian-agnostic. In Chapter 4, the specific models of nuclear interactions used in actual
calculations will be specified (see Sect. 3.2).

3On a fundamental level, four-body interactions are estimated to be sub-leading in the current formu-
lations of the χ-EFT power counting [13]. In addition, exploratory calculations with the explicit
inclusion of the leading four-body operators have demonstrated that they yield negligibly small con-
tributions [46].

7

A-body Schrödinger equation

Chapter 1
Basics of Green’s function theory
1.1 Many-body Schrödinger equation
In the ab initio approach, nuclear systems are described as a collection of A non-relativistic
interacting nucleons. The properties of such systems are determined by solving the A-
body Schrödinger eigenvalue equation

H|ΨA
k 〉 = EA

k |ΨA
k 〉 (1.1)

and/or its time-dependent counterpart, depending on whether one is interested in just the
(static) properties of a given system or also in its possible reactions with (or transitions
to) other systems. In the present document the focus will be on the time-independent
problem, i.e., on the determination of A-body energies EA

k and A-body eigenstates |ΨA
k 〉

that result from Eq. (1.1), together with all observables of interest that can be computed
from them. The A-body Hamiltonian entering Eq. (1.1) is generally written in the second-
quantised form

H =
∑

α

tαβ a†
αaβ + 1

4
∑

αγ
βδ

vαγβδ a†
αa†

γaδaβ + 1
36

∑

αγε
βδη

wαγεβδη a†
αa†

γa†
εaηaδaβ + . . .

≡ T + V + W + . . . , (1.2)

where tαβ represent the matrix elements of the kinetic energy operator1, while vαγβδ and
wαγεβδη denote matrix elements of generic2 two- and three-body operators respectively.
Greek indices α, β, γ, . . . label a basis in the one-body Hilbert space H1, whereas a†

α and
aα denote the associated creation and annihilation operators. In practice, interactions
between 4 or more nucleons have been shown to contribute only marginally to nuclear
observables and are discarded in the large majority of nuclear structure calculations3. For
the remainder of this chapter the Hamiltonian (1.2) is thus truncated at the three-body
level.

1Since nuclei are self-bound objects, one is in fact interested in the translationally invariant, internal
Hamiltonian Hrel ≡ H − Hcm, where Hcm denotes the centre-of-mass kinetic energy. In practice one
thus replaces T with the relative kinetic energy Trel ≡ T − Hcm, which is rewritten as a sum of a
one- and a two-body operators. The most appropriate way of expressing the latter two-body operator
in the case of particle-number breaking theories (as the one presented in Chapter 2) is discussed in
Ref. [87].

2The formalism presented in Chapters 1 and 2 is independent of the choice of many-body operators,
i.e. is Hamiltonian-agnostic. In Chapter 4, the specific models of nuclear interactions used in actual
calculations will be specified (see Sect. 3.2).

3On a fundamental level, four-body interactions are estimated to be sub-leading in the current formu-
lations of the χ-EFT power counting [13]. In addition, exploratory calculations with the explicit
inclusion of the leading four-body operators have demonstrated that they yield negligibly small con-
tributions [46].

7

Observables: expectation values
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Green’s functions

Chapter 1 Basics of Green’s function theory

1.2 Propagators
The idea at the heart of Green’s function approach is that the A-body Schrödinger equa-
tion (1.1) can be rewritten in terms of one-, two-, ..., A-body objects named propagators or
Green’s functions4 (GFs). Such objects are defined as follows. Starting from the ground-
state of the interacting system, |ΨA

0 〉, the so-called ‘2-point’, or ‘1-body’, Green’s function
is introduced as5

i gαβ(tα, tβ) = i g2−pt
αβ (tα, tβ) ≡ 〈ΨA

0 |T [aα(tα)a†
β(tβ)]|ΨA

0 〉 , (1.3a)

where T denotes the time-ordering operator and aα(tα) and a†
α(tα) represent respectively

annihilation and creation operators in Heisenberg picture. Similarly, higher-body GFs
can be introduced, e.g.,

i g4−pt
αγβδ(tα, tγ, tβ, tδ) ≡ 〈ΨA

0 |T [aγ(tγ)aα(tα)a†
β(tβ)a†

δ(tδ)]|ΨA
0 〉 , (1.3b)

i g6−pt
αγεβδη(tα, tγ, tε, tβ, tδ, tη) ≡ 〈ΨA

0 |T [aε(tε)aγ(tγ)aα(tα)a†
β(tβ)a†

δ(tδ)a†
η(tη)]|ΨA

0 〉 , (1.3c)

and so on. It is often convenient to consider propagators in the energy representation,
which is obtained via Fourier transform from the time representation introduced above.
For time-translationally invariant systems (i.e., the ones considered here), m-point GFs
depend only on m − 1 time differences or, equivalently, m − 1 independent frequencies.
Hence, Fourier transforms to the energy representation are well-defined only when the
total energy is conserved and read as

2πδ(ωα + ωγ + . . . − ωβ − ωδ − . . .) × gm−pt
αγ...,βδ...(ωα, ωγ, . . . , ωβ, ωδ, . . .)

=
∫

dtα

∫
dtγ . . .

∫
dtβ

∫
dtδ . . . ei(ωαtα+ωγtγ+...) e−i(ωβtβ+ωδtδ+...)

× gm−pt
αγ...,βδ...(tα, tγ, . . . , tβ, tδ, . . .) . (1.4)

For the 1-body GF this simplifies to

g2−pt
αβ (ω, ω) ≡ gαβ(ω) =

∫
dταβ eiωταβ gαβ(ταβ) . (1.5)

where ταβ ≡ (tα − tβ).
Moving from a wave-function to a propagator representation has benefits and draw-

backs. One of the main advantages is that, instead of the full A-body wave function,
one manipulates simpler (in practice, one- and two-body) objects from which most of
the observables of interest can be (exactly) computed. In this sense, GFs can be seen
as generalised (fully correlated) density matrices (see Sect. 1.4). Another useful property
relates to the physical interpretation of the one-body GF, which can be thought of as
describing the propagation of a particle or a hole in the correlated many-body system (as
evinced from its definition in Eq. (1.3a)). As a result, g contains information about the
systems with A ± 1 particles. This is explicitly exploited to derive the Lehmann represen-
tation of the propagator, which gives access to the spectra of the A±1-body systems (see
Sect. 1.5). The main drawback is that, because the one-body GF already contains a lot of
information on the system’s properties, its computation is typically more expensive6 than

4In the present document the synonymous terms propagator and Green’s function are used indifferently.
The term correlation function can also be found in the literature to indicate the same object.

5Throughout the document natural units c = ! = 1 are used.
6At the same level of approximation of the theory.
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Martin-Schwinger equations

Chapter 1 Basics of Green’s function theory

where the one-body basis that diagonalises H0, i.e., where H0 = ∑
γ ε0

γa†
γaγ, has been in-

troduced. These time derivatives are then applied to the definitions of g0 and g, Eqs. (1.8)
and (1.3a), to derive corresponding equations of motion in time domain. By combining
the two and Fourier-transforming to energy domain, the following equation of motion for
the one-body GF is eventually obtained

gαβ(ω) = g0 αβ(ω) −
∑

γδ

g0 αγ(ω) uγδ gδβ(ω)

−1
2

∑

γε
δµ

g0 αγ(ω) vγε,δµ

∫ dω1
2π

∫ dω2
2π

g4−pt
δµ,βε(ω1, ω2; ω, ω1 + ω2 − ω)

+ 1
12

∑

γεθ
δµλ

g0 αε(ω) wγεθ,δµλ

∫ dω1
2π

∫ dω2
2π

∫ dω3
2π

∫ dω4
2π

× g6−pt
δµλ,γβθ(ω1, ω2, ω3; ω4, ω, ω1 + ω2 + ω3 − ω4 − ω) . (1.11)

This represents the first equation of a set in which each equation couples the X-body
propagator to (X + k)-body propagators, with k ∈ {1, · · · , rH − 1}, rH being the rank of
the highest-body operator in the Hamiltonian. Other equations in the set can be obtained
by applying Eqs. (1.9) and (1.10) to the definitions of higher-body GFs. These coupled
equations known as the Martin-Schwinger hierarchy [88].

In order to decouple the set of equations one introduces two new types of objects.
First, one expresses n-point GFs as a sum of (properly antisymmetrised) n independent
propagators plus terms containing interaction vertices Γn−pt, i.e., one-particle irreducible
vertex functions that contain all interaction effects [70]. For instance, the 4-point GF is
written as

g4−pt
αγ,βδ(ωα, ωγ; ωβ, ωδ) = i

[
2πδ(ωα − ωβ)gαβ(ωα)gγδ(ωγ) − 2πδ(ωγ − ωβ)gαδ(ωα)gγβ(ωγ)

]

+(i)2 ∑

θµ
νλ

gαθ(ωα)gγµ(ωγ)Γ4−pt
θµ,νλ(ωα, ωγ; ωβ, ωδ)

× gνβ(ωβ)gλδ(ωδ) , (1.12)

and similarly for g6−pt (which includes both Γ4−pt and Γ6−pt) [89]. Second, one introduces
an auxiliary one-body object, the one-particle irreducible self-energy Σ), which encodes
all interactions contributing to the one-body GFs, as follows

Σ)
γδ(ω) = ũγδ

−(i)2

2
∑

µ
νλ

∑

ξθ
ε

vγµ,νλ

∫ dω1
2π

∫ dω2
2π

gνξ(ω1)gλθ(ω2)

× Γ4−pt
ξθ,δε(ω1, ω2; ω, ω1 + ω2 − ω)gεµ(ω1 + ω2 − ω)

+(i)4

12
∑

µφ
λνχ

∑

θξη
εσ

wµγφ,λνχ

∫ dω1
2π

∫ dω2
2π

∫ dω3
2π

∫ dω4
2π

gλθ(ω1)gνξ(ω2)gχη(ω3)

× Γ6−pt
θξη,εδσ(ω1, ω2, ω3; ω4, ω, ω1 + ω2 + ω3 − ω4 − ω)

× gεµ(ω4)gσφ(ω1 + ω2 + ω3 − ω4 − ω) . (1.13)

Combining Eqs. (1.11), (1.12), its analogous for g6−pt and (1.13) finally leads to a closed
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Chapter 1 Basics of Green’s function theory

1.2 Propagators
The idea at the heart of Green’s function approach is that the A-body Schrödinger equa-
tion (1.1) can be rewritten in terms of one-, two-, ..., A-body objects named propagators or
Green’s functions4 (GFs). Such objects are defined as follows. Starting from the ground-
state of the interacting system, |ΨA

0 〉, the so-called ‘2-point’, or ‘1-body’, Green’s function
is introduced as5

i gαβ(tα, tβ) = i g2−pt
αβ (tα, tβ) ≡ 〈ΨA

0 |T [aα(tα)a†
β(tβ)]|ΨA

0 〉 , (1.3a)

where T denotes the time-ordering operator and aα(tα) and a†
α(tα) represent respectively

annihilation and creation operators in Heisenberg picture. Similarly, higher-body GFs
can be introduced, e.g.,

i g4−pt
αγβδ(tα, tγ, tβ, tδ) ≡ 〈ΨA

0 |T [aγ(tγ)aα(tα)a†
β(tβ)a†

δ(tδ)]|ΨA
0 〉 , (1.3b)

i g6−pt
αγεβδη(tα, tγ, tε, tβ, tδ, tη) ≡ 〈ΨA

0 |T [aε(tε)aγ(tγ)aα(tα)a†
β(tβ)a†

δ(tδ)a†
η(tη)]|ΨA

0 〉 , (1.3c)

and so on. It is often convenient to consider propagators in the energy representation,
which is obtained via Fourier transform from the time representation introduced above.
For time-translationally invariant systems (i.e., the ones considered here), m-point GFs
depend only on m − 1 time differences or, equivalently, m − 1 independent frequencies.
Hence, Fourier transforms to the energy representation are well-defined only when the
total energy is conserved and read as

2πδ(ωα + ωγ + . . . − ωβ − ωδ − . . .) × gm−pt
αγ...,βδ...(ωα, ωγ, . . . , ωβ, ωδ, . . .)

=
∫

dtα

∫
dtγ . . .

∫
dtβ

∫
dtδ . . . ei(ωαtα+ωγtγ+...) e−i(ωβtβ+ωδtδ+...)

× gm−pt
αγ...,βδ...(tα, tγ, . . . , tβ, tδ, . . .) . (1.4)

For the 1-body GF this simplifies to

g2−pt
αβ (ω, ω) ≡ gαβ(ω) =

∫
dταβ eiωταβ gαβ(ταβ) . (1.5)

where ταβ ≡ (tα − tβ).
Moving from a wave-function to a propagator representation has benefits and draw-

backs. One of the main advantages is that, instead of the full A-body wave function,
one manipulates simpler (in practice, one- and two-body) objects from which most of
the observables of interest can be (exactly) computed. In this sense, GFs can be seen
as generalised (fully correlated) density matrices (see Sect. 1.4). Another useful property
relates to the physical interpretation of the one-body GF, which can be thought of as
describing the propagation of a particle or a hole in the correlated many-body system (as
evinced from its definition in Eq. (1.3a)). As a result, g contains information about the
systems with A ± 1 particles. This is explicitly exploited to derive the Lehmann represen-
tation of the propagator, which gives access to the spectra of the A±1-body systems (see
Sect. 1.5). The main drawback is that, because the one-body GF already contains a lot of
information on the system’s properties, its computation is typically more expensive6 than

4In the present document the synonymous terms propagator and Green’s function are used indifferently.
The term correlation function can also be found in the literature to indicate the same object.

5Throughout the document natural units c = ! = 1 are used.
6At the same level of approximation of the theory.
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1.4 Ground-state observables

equation for the one-body GF

gαβ(ω) = g0 αβ(ω) +
∑

γδ

g0 αγ(ω) Σ%
γδ(ω) gδβ(ω) , (1.14)

the well-known Dyson equation.

Perturbative expansion
The Dyson equation can be alternatively derived as an expansion of the exact GF in terms
of the g0 and H1. This is formally achieved in interaction picture by introducing a time-
evolution operator connecting the non-interacting state |ΦA

0 〉 to the correlated state |ΨA
0 〉

and by subsequently expanding this operator in powers of H1. One eventually obtains
the expression

gαβ(tα − tβ) = −i
∞∑

n=0
(−i)n 1

n!

∫
dt1 . . .

∫
dtn

×〈ΦA
0 |T [H1(t1) . . . H1(tn)aI

α(tα)aI
β

†(tβ)]|ΦA
0 〉c , (1.15)

whose n = 0 contribution coincides with the definition of g0, Eq. (1.8). The time-ordered
expectation value is then evaluated using Wick’s theorem, with the subscript ”c” spec-
ifying that only connected terms contribute to g. After Fourier-transforming to energy
domain, by inspecting the full expansion, one finds that all interaction terms can be recast
into the irreducible self-energy introduced in Eq. (1.13) and that the full series can be
written in the form

gαβ(ω) = g0 αβ(ω)
+

∑

γδ

g0 αγ(ω) Σ%
γδ(ω) g0 δβ(ω)

+
∑

γδεξ

g0 αγ(ω) Σ%
γδ(ω) g0 δε(ω) Σ%

εξ(ω) g0 ξβ(ω)

+ . . . . (1.16)

Finally, one realises that the sum of all terms after the first self-energy insertion in fact co-
incides with the full propagator itself, which leads to the standard Dyson equation (1.14).

In general, just like for the many-body Schrödinger equation, the full Dyson equation
can not be solved exactly. Approximations are typically introduced at the level of the
self-energy, either algebraically or making use of diagrammatic techniques9. The main
approximation strategies are briefly discussed in Sec. 1.6.

1.4 Ground-state observables
In general, X-body GFs give access to all X-body observables in the ground state of
the A-body system. To see that, it is convenient to first introduce many-body density

9The use of Wick’s theorem naturally leads to the introduction of Feynman diagrams in the case of
the perturbative expansion of the self-energy [70] (see also Ref. [90] for a pedagogical introduction
to diagrammatic techniques). Equivalently, a a diagrammatic representation can be introduced for
the equation-of-motion approach (see Ref. [89] for a diagrammatic treatment with the inclusion of
three-body forces).
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors

SF+
µ

⌘ TrH1

⇥
S+
µ

⇤
=

X

a2H1

��Ua

µ

��2 (71a)

SF�

⌫
⌘ TrH1

⇥
S�

⌫

⇤
=

X

a2H1

|V a

⌫
|2 (71b)

which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H1 through

S(z) ⌘
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Tracing the latter matrices over the one-body Hilbert space H1 provides spectroscopic factors
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=
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
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+ Koltun sum rule

Dyson equation

A-body wave function

Chapter 1
Basics of Green’s function theory
1.1 Many-body Schrödinger equation
In the ab initio approach, nuclear systems are described as a collection of A non-relativistic
interacting nucleons. The properties of such systems are determined by solving the A-
body Schrödinger eigenvalue equation

H|ΨA
k 〉 = EA

k |ΨA
k 〉 (1.1)

and/or its time-dependent counterpart, depending on whether one is interested in just the
(static) properties of a given system or also in its possible reactions with (or transitions
to) other systems. In the present document the focus will be on the time-independent
problem, i.e., on the determination of A-body energies EA

k and A-body eigenstates |ΨA
k 〉

that result from Eq. (1.1), together with all observables of interest that can be computed
from them. The A-body Hamiltonian entering Eq. (1.1) is generally written in the second-
quantised form

H =
∑

α

tαβ a†
αaβ + 1

4
∑

αγ
βδ

vαγβδ a†
αa†

γaδaβ + 1
36

∑

αγε
βδη

wαγεβδη a†
αa†

γa†
εaηaδaβ + . . .

≡ T + V + W + . . . , (1.2)

where tαβ represent the matrix elements of the kinetic energy operator1, while vαγβδ and
wαγεβδη denote matrix elements of generic2 two- and three-body operators respectively.
Greek indices α, β, γ, . . . label a basis in the one-body Hilbert space H1, whereas a†

α and
aα denote the associated creation and annihilation operators. In practice, interactions
between 4 or more nucleons have been shown to contribute only marginally to nuclear
observables and are discarded in the large majority of nuclear structure calculations3. For
the remainder of this chapter the Hamiltonian (1.2) is thus truncated at the three-body
level.

1Since nuclei are self-bound objects, one is in fact interested in the translationally invariant, internal
Hamiltonian Hrel ≡ H − Hcm, where Hcm denotes the centre-of-mass kinetic energy. In practice one
thus replaces T with the relative kinetic energy Trel ≡ T − Hcm, which is rewritten as a sum of a
one- and a two-body operators. The most appropriate way of expressing the latter two-body operator
in the case of particle-number breaking theories (as the one presented in Chapter 2) is discussed in
Ref. [87].

2The formalism presented in Chapters 1 and 2 is independent of the choice of many-body operators,
i.e. is Hamiltonian-agnostic. In Chapter 4, the specific models of nuclear interactions used in actual
calculations will be specified (see Sect. 3.2).

3On a fundamental level, four-body interactions are estimated to be sub-leading in the current formu-
lations of the χ-EFT power counting [13]. In addition, exploratory calculations with the explicit
inclusion of the leading four-body operators have demonstrated that they yield negligibly small con-
tributions [46].
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Observables: expectation values
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Green’s functions
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i g4−pt
αγβδ(tα, tγ, tβ, tδ) ≡ 〈ΨA

0 |T [aγ(tγ)aα(tα)a†
β(tβ)a†

δ(tδ)]|ΨA
0 〉 ,

pt (t , t , t , t , t , t ) ≡ 〈ΨA|T [a (t )a (t )a (t )a† (t )a†(t )a…

i g↵�(t↵, t�) ⌘ h A

0 |T [a↵(t↵)a
†

�
(t�)]| A

0 i

gαβ(ω) = g0 αβ(ω) +
∑

γδ

g0 αγ(ω) Σ%
γδ(ω) gδβ(ω) ,

the well-known Dyson equation.Self-energy expansion  ➝  Many-body approximation

Observables: convolutions with GFs

h A

0 |O1B | A

0 i =
X

↵�

Z
d!

2⇡i
g�↵(!) o↵�

E0 = h A

0 |H | A

0 i =
1

2

X

↵�

Z
d!

2⇡i
g�↵(!) [t↵� + ! �↵� ] (70)+ Koltun sum rule

Dyson equation

A-body wave function

EA
k |ΨA

k 〉

and/or its time-dependent counterpart, depending on whether one is interested in just the

A-body Schrödinger equationodinger eigenvalue equation

H|ΨA
k 〉 = EA

k |ΨA
k 〉

and/or its time-dependent counterpart, depending on whether one is interested in just the

Observables: expectation values

O = h A

0 |O| A

0 i

Green’s functions

Basic ingredients

Algebraic Diagrammatic Construction (ADC)
Employed here at 2nd order (ADC(2))
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Generation 2nd order diagrams

Build Dyson Matrix

DiagonalizeGeneration 1st order diagrams

Reference OpRS prop.

Krylov projection
sc0 approximation

Full sc

, , , M N E> E<

HF

sc0 converged?

The self-consistent loop

Reference (d)HF state
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• dDSCGF trend in line with CC and Exp.

• Naïve rescaling based on mass

Energies compatible with dCCSD

• dDSCGF results deliver wrong part. num.

overbinding

Need of a particle adjustment

First tests on Neon isotopes where dCC results are available

[Novario et al. 2020]

Ground-state energy of Neon isotopes

• Access to odd-even systems
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R2
ch = R2

p + ⟨r2
p⟩ +

N
Z

⟨r2
n⟩ + ⟨r2

DF⟩ + ⟨r2
SO⟩

• Overall trend follows dCCSDT-1

• Wrong trend for 24-26Ne

• Shift prob. due to MB order and emax

[Novario et al. 2020]

1B + 2B CoM corrections

Charge radii of Neon isotopes
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(2021)

dDSCGF(2) vs sGSCGF(2) in Argon isotopes

12



• Oblate isotopic chain

• Comparison with spherical Gorkov calc.

• Improved description of collectivity

• Necessity of deformation

• Correlation of difference w.r.t. def.

dDSCGF(2) vs sGSCGF(2) in Argon isotopes
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Reference (d)HF state

Generation 2nd order diagrams

Build Dyson Matrix

DiagonalizeGeneration 1st order diagrams

Reference OpRS prop.

Krylov projection

, , , M N E> E<

HF

sc0 converged?

Particle adjustment: theoretical setup

no additional computational cost!

Lambda 
iterations
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• Lamba loop numerically stable for sc0

• Access to odd-even nuclei restored

• ~4 MeV gain w.r.t. naïve rescaling

Self-consistent loop also numerically stable with particle adjustment!

• CC for comparison

Proper particle adjustment

Wrong particle number
Naïve rescaling

Particle adjustment: ground-state energy
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Correct trend for 24-26NeResults closer to dCCSDT-1 and Exp.

[Novario et al. 2020]

Proper particle adjustment
Standard sc0

Particle adjustment: charge radii
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Super-preliminary calculation of Aluminium isotopes!

Direct calculation of odd systems
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• dDSCGF with good angular momentum

Numerical optimization code (MPI)• Beyond ADC(2): extended ADC(2) and ADC(3)

Future perspectives:

Symmetry Restoration (yet to be formulated)

MR-SCGF

Conclusions

• Generalize to more general symmetry breakings: triaxial and octupolar deformations

Deformation is mandatory for the ab initio description of open-shell nuclei with polynomial scaling

• First application: optical potentials in open-shell nuclei

Correlations captured by dDSCGF bring visible results on observables w.r.t. dBMBPT2 (and sGSCGF)
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Upcoming project on nuclear superfluidity

<latexit sha1_base64="hF7vXe6XvIotis3roAYAFiIUOUU="></latexit>

!(3)(N) → (↑1)N

2
[E(N + 1)↑ 2E(N) + E(N ↑ 1)]

• Nuclear superfluidity → three-point mass formula

• Many-body correlations go in the right direction

• Results for EM 1.8/2.0 interaction

Upcoming sensitivity study on impact of LECs on superfluidity

[Influence of chiral forces on nuclear pairing. AS, A. Ekström, C. Forssén. In preparation]

[Paper in preparation]
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