Precision NCSM Calculations of Nuclear Radii

essisches Komnetenzzentrum für Hochleistungsrechnen

Artificial Neural Networks

- Utilizing pattern recognition capability
- Network has to be trained
- Trainings data from converged calculations

Multiple networks can be constructed and trained

NCSM Data

ANN Extrapolations

Pre-Selection

- Mitigating unwanted artifacts in histogram
- Selecting 4 flattest ascending $a_{\rm HO}$ sequences
- Statistical analysis extracts many-body and network uncertainties

Radius Differences

für Hochleistungsrechnen

26.02.25 Tobias Gesser

Bayesian Analysis

$\begin{array}{c} \operatorname{NCSM} \\ \operatorname{Calculations} \end{array}$			Data Evaluation		Post-Processing			Final Prediction
Family EMN SMS	NLO NLO	N²LO N²LO	N ³ LO N ⁴ LO+	3.0	NLO	N ² LO	N ³ LO	+ χ uncert. ⁸ B
 Estihigh Seletfrom Continue J.A. Melet 	BUC mate effect aer orders ct most pi n each ord nbine man raction un	QEYE ct of missin robable va ler's histog ny-body an ncertaintie s. Rev. C 100, 04	ng lue gram nd es 44001 (2019)	2.9 <u>[J]</u> 2.8 <u>2.7</u> 2.6 2.5 <u>H</u>	EMN[500]		$\mu = 2.706 \\ \epsilon^{-} = 0.016 \\ \epsilon^{+} = 0.021$	$\mu = 2.711 \\ \epsilon^{-} = 0.027 \\ \epsilon^{+} = 0.031$
26.02.25	Tobias Gessei	r 7					Hessisches Kompetenzz für Hochleistungsrechne	

Point-Proton Radii

- Predictions including manybody and chiral uncertainties
- Compared to experimental data (if available)
- Compatible results from both interaction families

Proton-Neutron Radius Differences

NCSM	Data	Dest Dreassing	Final
Calculations	Evaluation	Post-Processing	Prediction

- Radius differences in much better agreement across interactions
- Larger proton-neutron radius difference for ⁸B
- ⁶He as accepted halo nucleus

Precision NCSM Calculations of Charge Radii

TECHNISCHE UNIVERSITÄT

DARMSTADT

10

Tobias Gesser

26.02.25

Thank you for your attention!

Find more details on my poster

\$FB 1245

lessisches Kompetenzzentrum für Hochleistungsrechnen

NCSM

FG

Hessisches Kompetenzzentrum für Hochleistungsrechnen

26.02.25 | Tobias Gesser | 13

Artificial Neutral Networks

- M. Knöll et al., Phys. Lett. B 839, 2023.
- T. Wolfgruber et al., arXiv:2310.05256, 2023
- B. Maaß et al., Phys. Rev. Lett. 122, 2019.
- W.G. Jiang et al., Phys. Rev. C 100, Nov. 2019.
- P. Maris et al., Front. Phys. 11, Apr. 2023.

