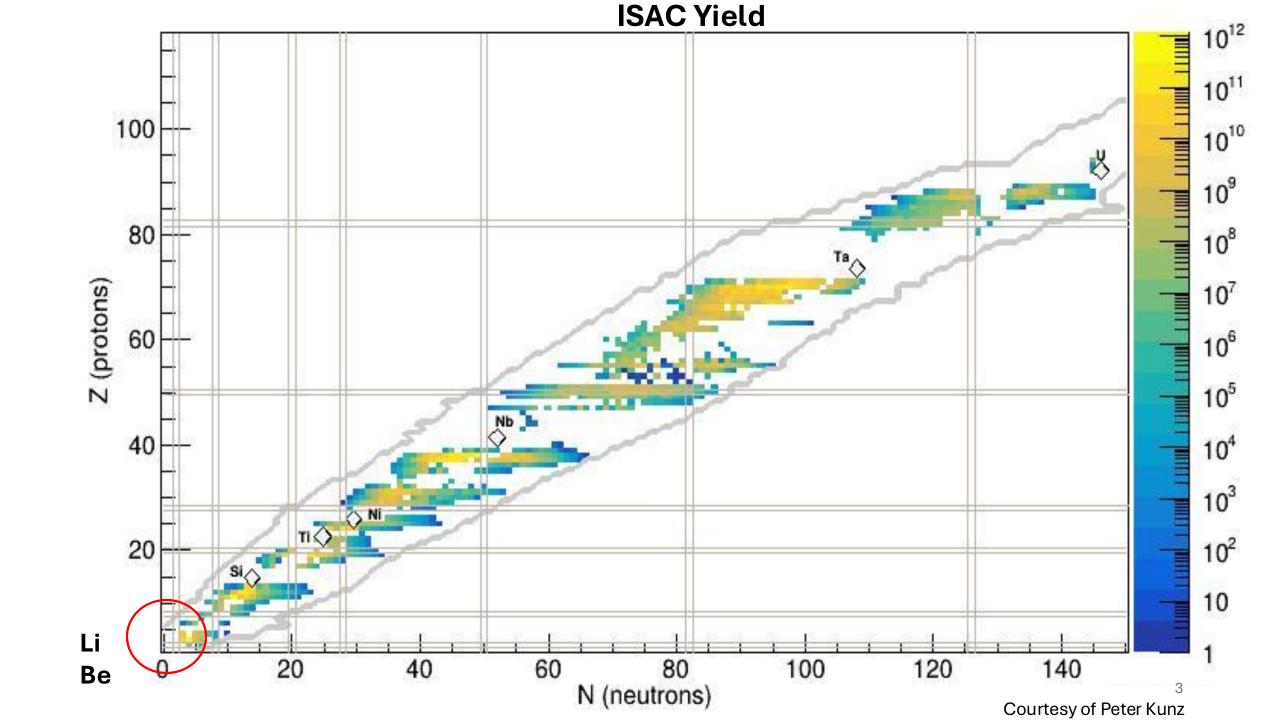
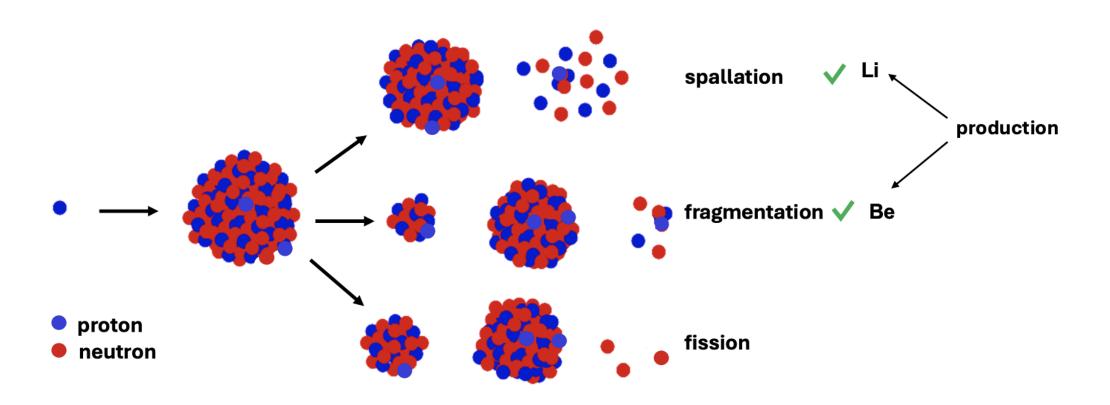


The Quest for ¹⁴Be (4.35 ms half-life) Aurelia Laxdal

Science Week 2025

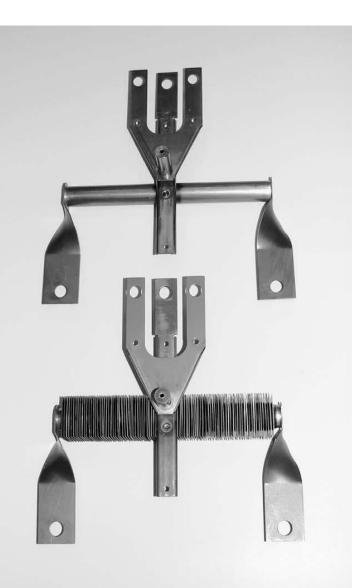

Challenges:

- Extraction of ¹⁴Be from the ISAC targets
- Increase the production of ¹²Be and ¹¹Li


Reasons:

- LOIS1054 "Study of β-decay of Halo Nucleus ¹⁴Be" 8PI/GRIFFIN
- LOIS1621 "Detailed studies of nuclei close to the neutron drip-line" TITAN including Penning-trap mass measurement of the light ¹⁴Be
- PhD project

Isotopes	Half-life	ISAC Yields (average) [ions/sec]	In-target production [isotope/sec/(mmol/cm²)/ μA p+]
¹¹ Li	8.75 ms	1.86 x 10 ⁴	8.74 x 10 ²
¹⁰ Be	1.51 x 10 ⁶ y	1.20 x 10 ⁸	2.93 x 10 ⁶
¹¹ Be	13.76 s	1.27 x 10 ⁶	1.49 x 10 ⁵
¹² Be	21.30 ms	2.86 x 10 ³	2.58 x 10 ⁴
¹⁴ Be	4.35 ms	-	3.74 x 10 ²

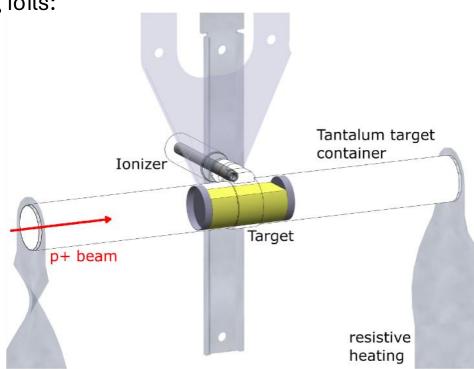


Li and Be production in ISOL facilities

ISAC targets

Li and Be beams

Target materials: D-shaped


- **metal foils: Ta (25.4 \mum)**, Nb
- graphite
- composite carbide on graphite backing foils: ZrC , TiC, SiC, UCx,
- composite oxide on metal backing foils:NiO

Target Containers: tantalum

- Low Power target container
 - -> low intensity p+
- High Power target container
 - -> high intensity p+

Ion sources:

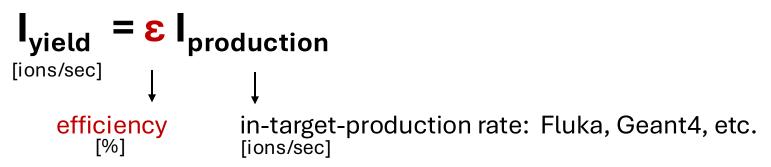
SIS, FEBIAD, **LIS**, IG-LIS

Strategies

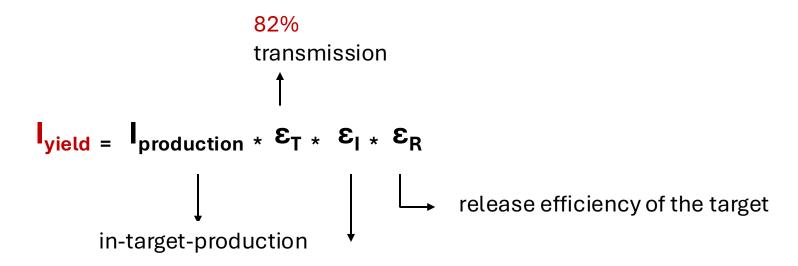
1. Target design

2. Ionization efficiency

- 3. Use rotating p⁺ beam
- 4. Analyze Yield measurements of previous targets


5. Detection

- -> check current efficiency
- \rightarrow consider re-design: use thinner Ta target foils 10 μ m Ta#67
 - Surface ionization -> Li
 - Laser ionization -> Be
- -> increase p+ beam: $85 \mu A$


- previously at the Yield Station
- GRIFFIN

RIB yields

Transmission and Ionization efficiencies

Li surface ionized: 6.66%

from Saha-Langmuir equation for a work function of rhenium at 2300 deg C

$$rac{\Phi}{\Phi_0} = \epsilon_{is} e^{rac{W-l_p}{kT}}$$

 $\frac{\Phi}{\Phi_0}$: ion flux over neutral flux ratio per unit surface area

 ϵ_{is} : ion source coefficient (super simplification ϵ_{is} = 1)

 I_p : ionization potential

W : work function of surface ($W_{Ta} = 4.12eV$, $W_{Re} = 5.10eV$)

kT: Boltzmann constant (8.63 · 10-5 eV/K), surface temperature K

- Be laser ionized: 2-10%
- -> optimize lasers for ¹²Be
- -> apply isotope shift and excitation scheme of ¹⁴Be (V. Sebastian PhD thesis)

297.405 nm

42 565.35 cm -1

pol matters
parallel pol

234.933 nm

⁴Be laser ionization scheme (Jens Lassen)

IP 75 192.64(6) cm⁻¹

Diffusion of atoms out of the target material (foil)

$$\varepsilon_{\mathsf{D}} \longrightarrow \mathsf{Ca}$$

Calculations: Fick's equations:

reduced the diffusion time:

-> use thinner foils

flux of particles coming out of the foil

Arrhenius' equation:

Solved via separation of variables assuming: uniform temperature, concentration, and 1-dimensional

$$\int = -D \nabla C$$

$$\frac{\partial C}{\partial t} = D \nabla^2 C$$

$$D = D_0 \cdot e^{-\Delta H/RT}$$

shows increase of diffusion with temperature

Estimation: characteristic diffusion time: 70% of atoms diffuse out

$$\tau_d = \frac{d^2}{\pi^2 D}$$
 \longrightarrow

 $au_{
m d_10\mu m}$ -> 6.5 x faster diffusion time vs. $au_{
m d_25.4\mu m}$ $au_{
m d_10\mu m}$ -> 11 x faster diffusion time vs. $au_{
m d_33\mu m}$

(B. Mustapha and J. A. Nolen - 2003 Elsevier)

Diffusion simulations: Monte Carlo simulations

Effusion of atoms out of the target container

$$\varepsilon_{\mathsf{E}} \longrightarrow$$

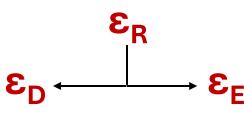
→ Effusion simulations: Monte Carlo simulations

Probability of escape from a surface:

$$v = v_0 \cdot e^{-\Delta H_{ads}/R}$$

Diffusion is the dominant slow process

Sticking time:

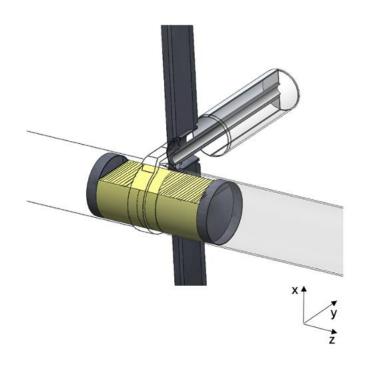

$$t_s = 1 / \nu$$

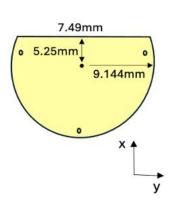
reduce the effusion time:

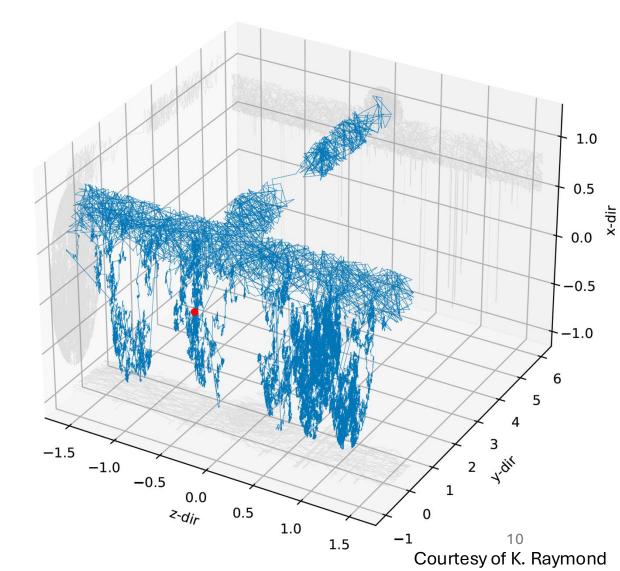
reduced the number of collisions

-> foils arrangement

Diffusion of isotopes


Effusion simulations (RIBO) of ⁸Li through the foils, out of the target container


• on average 477,410 collisions with the surfaces of the foils, target container and ionizer

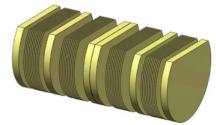

Diffusion of isotopes out of the foils

Ta foils used in ISAC: 25 μ m thick dimpled D-shaped

ISAC Ta target: 470 foils -> 3.4 cm long target

Before the exper	iment					
ISAC Targets		Regular Ta LP	Ta 65	Ta 66	Ta 67	
Foils thickness [µm]		25.4	33	33	10	
Target length [cm]		3.4	3.4	5	3.75	
Gap in between foils [µm]		4.7	3.9	7.3	6.23	33.7% target thickness of the standard target
Total target mass [g]		50	62.11	62.23	16.85	
Target thickness [g/cm²]		23.58	29.30	29.35	7.95	
Target thickness [mmol/cm²]		130.2	161.79	162.26	43.94	
Maximum p+ [μA] stationary beam		40	30	30	60	
Maximum p+ [μA] rotating beam		60	40	-	95	
		From Yield database [isotopes/sec]	Measurement [isotopes/sec]	Measurement [isotopes/sec]		
	Li8	6E+8	6.55E+8	5.8E+8		
0044 % - L-l				2.3E+8		Li8 and Li9 yields are comparable regardless of the foils' thickness
I _{FLUKA} 2011 Yield database (minimum)	[isotopes/sec]	7.66E+09	7.13E+09	9.54E+09	5.66E+09	
	Li9	4E+7		3.9E+7		
I _{FLUKA} 2011 Yield database (minimum)			1.41E+7	2.4E+7		
	[isotopes/sec]	1.12E+09	1.04E+09	1.05E+09	8.28E+08	
	Li11	1.86E+4	8.6E+3	5.7E+3		Li11 yields are lower
I 2011 Viold			1.7E+3	2.5E+3		for the 33-micron
I _{FLUKA} 2011 Yield database (minimum)	[isotopes/sec]	4.55E+06	4.24E+06	4.25E+06	3.36E+06	thick foils

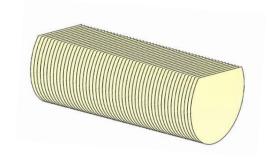
Ta Target Assembly


Standard Ta target:

3.4 cm long target made with packs of 20 foils & loose foils: 470 foils in total 25.4 µm thick

gap in between foils: 4.7 µm

1 pack / 75 singles / 1 pack / 100 singles / 2 packs / 100 singles / 1 pack / 75 singles / 1 pack


← center →

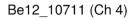

Thin Ta foil target: Ta#67

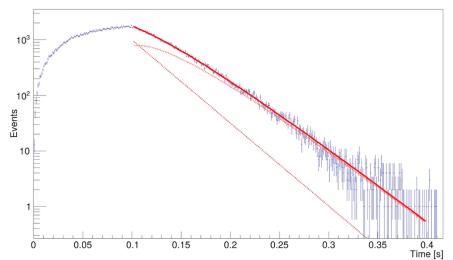
3.4 cm long target made 2 packs of with 375 foils each 10 µm thick

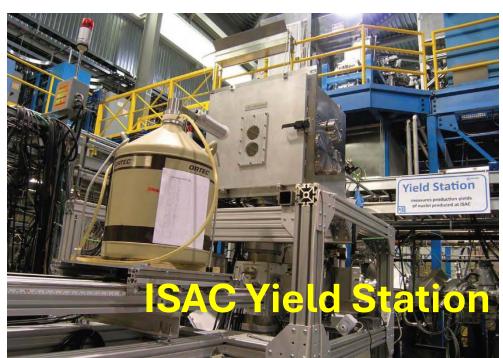
gap in between foils: 6.23 µm

25.4 μm thick foils half pack = 1.7 cm long

10 μm thick foil half pack = 1.7 cm long

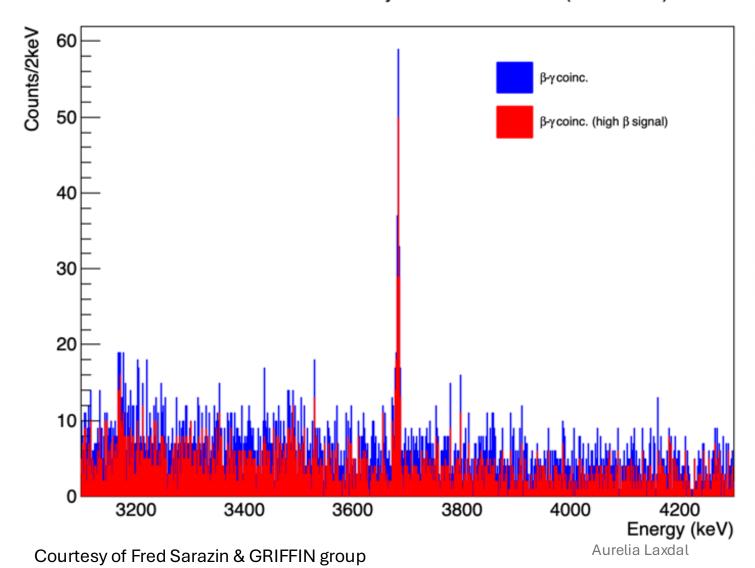

Highlights of the experiment

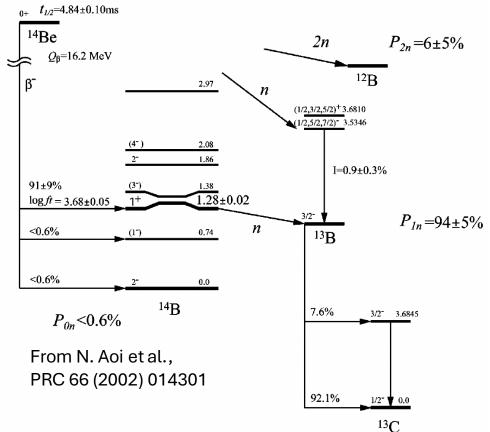

Isotope	Half-life	Ta67 yields [ions/sec]	Rotating p ⁺ [μA]
¹¹ Be	13.76s	3.70E+06	65
¹² Be	21.30ms	1.82E+04	80
¹¹ Li	8.75ms	4.80E+04	80
⁹ Li	178.3ms	1.50E+08	60
⁸ Li	839.9ms	1.60E+09	60


1		
Rotating p $^+$		
60		
60		
60		
55		
60		

Detection

Beta decay


Beta decay


Beta – Gamma coincidence

Evidence of ¹⁴Be at the GRIFFIN spectrometer

Evidence of ¹⁴Be: ¹³Be decay to 3.6845 MeV ¹³C (12.3 hours)

Counts in the peak: 165 (blue)
Total time*: 12.3 hours

Est. gamma eff.: 6% @ 3.6 MeV

Est. beta eff: 80%

Beta-n: 90% (see Aoi et al.) 13B to 13C (3.68MeV) 7.6% (see Aoi et al.)

Est. ¹⁴Be rate (/s): 1.13 for this calculation

* Includes different p+ intensity and various magnet settings (hence the ¹⁴Be rate for a "good" setting is likely greater than 1 pps).

Future work

Ionization efficiency

- improve the **stability and accuracy of the laser**
- use new crystal

Target foils

optimize foil thickness: thinner foils

Rotating p+ beam

• find optimal p⁺ beam rotation settings for the ¹²Be releases

Mass separation

Optimize/control the mass separation (separator magnets)

Future goals

- -> Measure the isotope shift of ¹⁴Be
- -> LOIS1621 "Detailed studies of nuclei close to the neutron drip-line" TITAN including Penning-trap mass measurement of the light ¹⁴Be

Thank you

to all the department, groups and people that help with this experiment

GRIFFIN Group

Targets R&D Group

Beam Physics and Delivery

TPO group

Driver Ops & RIB Ops